

of Science and Useful Arts

The Director

of the United States Patent and Trademark Ofice has received an application for a patent for a new and useful invention. The title and description of the invention are enclosed. The requirements of law have been complied with, and it has been determined that a patent on the invention shall be granted under the law.

Therefore, shis United States

Allm

grants to the person(s) having title to this patent the right to exclude others from making, using, offering for sale, or selling the invention throughout the United States of America or importing the invention into the United States of America, and if the invention is a process, of the right to exclude others from using, offering for sale or selling throughout the United States of America, products made by that process, for the term set forth in 35 U.S.C. 154(a)(2) or (c)(1), subject to the payment of maintenance fees as provided by 35 U.S.C. 41(b). See the Maintenance Fee Notice on the inside of the cover.

Andres Jana

DIRECTOR OF THE UNITED STATES PATENT AND TRADEMARK OFFICE

Maintenance Fee Notice

If the application for this patent was filed on or after December 12, 1980, maintenance fees are due three years and six months, seven years and six months, and eleven years and six months after the date of this grant, or within a grace period of six months thereafter upon payment of a surcharge as provided by law The amount, number and timing of the maintenance fees required may be changed by law or regulation. Unless payment of the applicable maintenance fee is received in the United States Patent and Trademark Office on or before the date the fee is due or within a grace period of six months thereafter, the patent will expire as of the end of such grace period

Patent Term Notice

If the application for this patent was filed on or after June 8, 1995, the term of this patent begins on the date on which this patent issues and ends twenty years from the filing date of the application or, if the application contains a specific reference to an earlier filed application or applications under 35 U.S. C. 120, 121, 365(c), or 386(c), twenty years from the filing date of the earliest such application ("the twenty-year term"), subject to the payment of maintenance fees as provided by 35 U.S. C. 41(b), and any extension as provided by 35 U.S. C. 154(b) or 156 or any disclaimer under 35 U.S. C. 253.

If this application was filed prior to June 8, 1995, the term of this patent begins on the date on which this patent issues and ends on the later of seventeen years from the date of the grant of this patent or the twenty-year term set forth above for patents resulting from applications filed on or after June 8, 1995, subject to the payment of maintenance fees as provided by 35 U.S.C. 41(b) and any extension as provided by 35 U.S.C. 156 or any disclaimer under 35 U.S.C. 253

US010300135B2

(12) United States Patent

(10) Patent No.: US 10,300,135 B2

(45) **Date of Patent:** May 28, 2019

(54) MULTIVALENT GLYCOCONJUGATE VACCINES

(71) Applicant: **BIOSYNTH S.R.L.**, Rapolano Terme

(Siena) (IT)

(72) Inventor: Massimo Porro, Rapolano Terme

(Siena) (IT)

(73) Assignee: BIOSYNTH S.R.L., Rapolano Terme

(Siena) (IT)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 283 days.

(21) Appl. No.: 14/764,953

(22) PCT Filed: Jan. 29, 2014

(86) PCT No.: PCT/EP2014/051670

§ 371 (c)(1),

(2) Date: Jul. 30, 2015

(87) PCT Pub. No.: WO2014/118201

PCT Pub. Date: Aug. 7, 2014

(65) Prior Publication Data

US 2017/0143821 A1 May 25, 2017

(30) Foreign Application Priority Data

Jan. 31, 2013 (IT) MI2013A0142

(51) Int. Cl.

A61K 39/385 (2006.01)

A61K 39/09 (2006.01)

A61K 39/095 (2006.01)

A61K 39/102 (2006.01)

A61K 39/00 (2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,711,779 A *	12/1987	Porro	
5,153,312 A *	10/1992	Porro	 424/194.1 A61K 39/092
5 306 492 A	4/1004	Dormo	424/194.1

FOREIGN PATENT DOCUMENTS

EP	1501542 B1	8/2007
EP	1501542 B2	11/2011
EP	1868645 B1	3/2012

OTHER PUBLICATIONS

Douglas Swanson, 659. Emergence of PCV13 Nonvaccine—Specific Streptococcus Pneumoniae Serotypes 6C and 23A, and Serogroups 15, 33, and 35 Isolated from Children in Kansas City, Missouri, IDSA Boston Annual Meeting, Oct. 21, 2011.

Pneumococcal Polysaccharide Conjugate Vaccine (Absorbed), European Pharmacopoeia 6.0, Counsel of Europe (2007), pp. 825-827. Arndt and Porro, Strategies for Type-Specific Glycoconjugate Vaccines of Streptococcus Pneumoniae, Immunobiology of Proteins and Peptides, 1991, pp. 129-148, Plenum Press, New York.

Berzofsky and Schechter, The Concepts of Crossreactivity and Specificity in Immunology, Molecular Immunology, 1981, pp. 751-763, vol. 18, No. 8, Great Britain.

Besnard et al., Automated Design of Ligands to Polypharmacological Profiles, Nature, Dec. 2012, pp. 215-220, vol. 492, Macmillan Publishers Limited.

Bromuro et al., Beta-Glucan-CRM197 Conjugates as Candidates Antifungal Vaccines, Vaccine, 2010, pp. 2615-2623, vol. 28.

Calix et al., Elucidation of Structural and Antigenic Properties of Pneumococcal Serotype 11A, 11B, 11C, and 11F Polysaccharide Capsules, Journal of Bacteriology, Oct. 2011, pp. 5271-5278, vol. 193, No. 19, American Society for Microbiology.

Dagan et al., Glycoconjugate Vaccines and Immune Interference: A Review, Vaccine, 2010, pp. 5513-5523, vol. 28.

Eby et al., Pneumococcal Conjugate Vaccines, Vaccines, 1994, pp. 119-123, vol. 94.

Giannini et al., The Amino Acid Sequence of Two Non-Toxic Mutants of Diphtheria Toxin: CRM45 and CRM197, Nucleic Acids Research, 1984, pp. 4063-4069, Vo. 12, No. 10.

Yongmoon et al., Protection Against Candidiasis by an Immunoglobulin G3 (IgG3) Monoclonal Antibody Specific for the Same Mannotriose as an IgM Protective Antibody, Infection and Immunity, Mar. 2000, pp. 1649-1654, vol. 68, No. 3.

Elvin A. Kabat, The Nature of an Antigenic Determinant, The Journal of Immunology, 1966, vol. 97, No. 1.

U. K. Laemmli, Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4, Nature, Aug. 1970, pp. 680-685, vol. 227.

Moreau et al., Application of High-Resolution N.M.R. Spectroscopy to the Elucidation of the Structure of the Specific Capsular Poly-Saccharide of Streptococcus Pneumoniae Type 7F, Carbohydrate Research, 1988, pp. 79-99, vol. 182.

(Continued)

Primary Examiner — Jana A Hines Assistant Examiner — Khatol S Shahnan Shah (74) Attorney, Agent, or Firm — Hedman & Costigan, P.C.; James V. Costigan; Kathleen A. Costigan

(57) ABSTRACT

The present invention refers to new conjugate antigens expressing built-in multiple epitopes and to polyvalent gly-coconjugate vaccines and formulations containing the same. In addition, the present invention concerns the use of these vaccines in particular for the protection of the human population, and in particular for the protection of the paediatric population from pulmonary and systemic infections due to *S. pneumoniae*, *N. meningitidis*, *H. influenzae*, *K. pneumoniae*, *M. tuberculosis*, *S. aureus*, or from intestinal infections due to *S. typhi*, *V. cholerae* and *E. coli*. The present invention additionally refers to new polyvalent gly-coconjugate vaccines for the protection from *C. albicans* and *E. coli* systemic and genitourinary infections or for the protection from *M. bovis* infections in veterinary medicine.

9 Claims, 13 Drawing Sheets

Specification includes a Sequence Listing.

(56) References Cited

OTHER PUBLICATIONS

Nanra et al., Capsular Polysaccharides are an Important Immune Evasion Mechanism for *Staphylococcus Aureus*, Human Vaccines and Inrimunotherapeutics, 2013, pp. 480-487, vol. 9, No. 3.

O'Riordan and Lee, *Staphylococcus Aureus* Capsular Polysaccharides, Clinical Microbiology Reviews, 2004, pp. 218-234, vol. 17, No. 1.

Porro et al., Immunogenic Correlation Between Cross-Reacting Material (CRM197) Produced by a Mutant of Corynebacterium Diphtheriae and Diphtheria Toxoid, The Journal of Infectious Diseases, Nov. 1980, pp. 716-724, vol. 142, No. 5.

Porro et al., Modifications of the Park-Johnson Ferricyanide Submicromethod for the Assay of Reducing Groups in Carbohydrates, Analytical Biochemistry, 1981, pp. 301-306, vol. 118.

Porro et al., Immunochemistry of Meningococcal Group B Oligosaccharide-Protein Conjugates, Medecine Tropicale, 1983, pp. 129-132, vol. 43, No. 2.

Porro et al., Specific Antibodies to Diphtheria Toxin and Type 6A Pneumococcal Capsular Polysaccharide Induced by a Model of Semi-Synthetic Glycoconjugate Antigen, Molecular Immunology, 1985, pp. 907-919, vol. 22, No. 8.

Zucker and Murphy, Monoclonal Antibody Analysis of Diphtheria Toxin-I. Localization of Epitopes and Neutralization of Cytotoxicity, Molecular Immunology, 1984, pp. 785-793, vol. 21, No. 9, Great Britain.

Massimo Porro, World Health Organization, 1987, pp. 279-306; John Wiley & Sons Ltd, New York.

Pride et al., Validation of an Immunodiagnostic Assay for Detection of 13 Streptococcus Pneumoniae Serotype-Specific Polysaccharides in Human Urine, Clinical and Vaccine Immunology, Aug. 2012, pp. 1131-1141, vol. 19, No. 8.

Rebers and Heidelberger, The Specific Polysaccharide of Type VI Pneumococcus . II. The Repeating Unit, J. Am. Chem. Soc., 1961, pp. 3056-3059, vol. 83.

Reeves and Goebel, Chemoimmunological Studies on the Soluble Specific Substance of Pneumococcus V. The Structure of the Type III Polysaccharide, J. Biol. Chem.,1941, 511-519.

Richter et al., Changing Epidemiology of Antimicrobial-Resistant Streptococcus Pneumoniae in the United States, 2004-2005, Clinical Infectious Diseases • Epidemiology of Resistant Pneumococci, 2009, vol. 48.

Rustici A. et al., Molecular Mapping and Detoxification of the Lipid a Binding Site by Synthetic Peptides, Science, Jan. 1993, pp. 361-365, vol. 259.

Satzke et al., Molecular Epidemiology of Streptococcus Pneumoniae Serogroup 6 Isolates from Fijian Children, Including Newly Identified Serotypes 6C and 6D, Journal of Clinical Microbiology, Nov. 2010, pp. 4298-4300, vol. 48, No. 11.

Schwebach et al., Glucan is a Component of the Mycobacterium Tuberculosis Surface that is Expressed In Vitro and In Vivo, Infection and Immunity, May 2002, pp. 2566-2575, vol. 70, No. 5. Towbin et al., Electrophoretic Transfer of Proteins from Polyacrylamide Gels to Nitrocellulose Sheets: Procedure and Some Applications, Proc. Natl. Acad. Sci. USA, Sep. 1979, pp. 4350-4354, vol. 76, No. 0

Uchida et al., Diphtheria Toxin and Related Proteins, The Journal of Biological Chemistry, 1973, pp. 3845-3850, vol. 248, No. 11.

Xin et al., Synthetic Glycopeptide Vaccines Combing β-mannan and Peptide Epitopes Induce Protection Against Candidiasis, Proc. Natl. Acad. Sci. USA, Sep. 2008, pp. 13526-13531, vol. 105, No. 36.

Yao et al., Type Distribution of Serogroup 6 Streptococcus Pneumoniae and Molecular Epidemiology of Newly Identified Serotypes 6C and 6D in China, Diagnostic Microbiology and Infectious Disease, 2011, pp. 291-298, vol. 70.

Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority dated Jun. 4, 2014.

Porro M et al., A Molecule Model of Artificial Glycoprotein with Predetermined Multiple Immunodeterminants for Gram Positive and Gram-Negative Encapsulated Bacteria, Molecular Immunology 1986, vol. 23, No. 4, pp. 385-391.

^{*} cited by examiner

¹H-NMR spectrum of Ps 3 and Ps3-DAB derivative

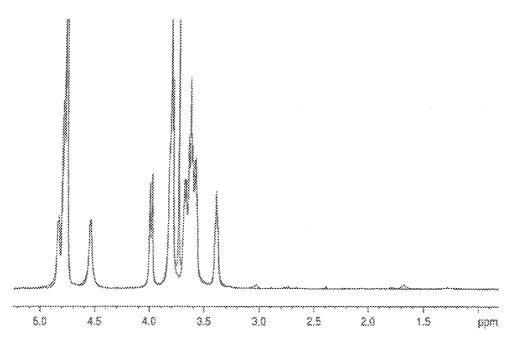


FIG.1

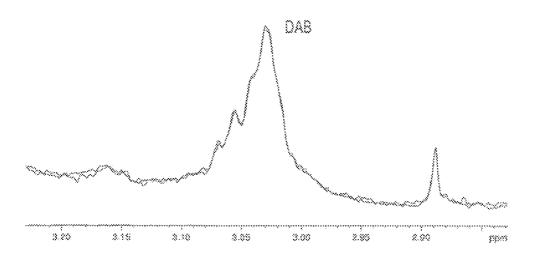
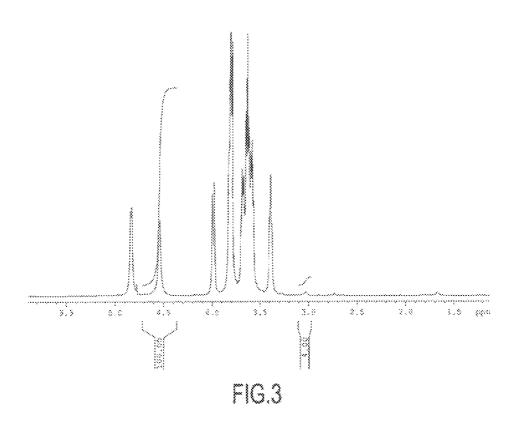
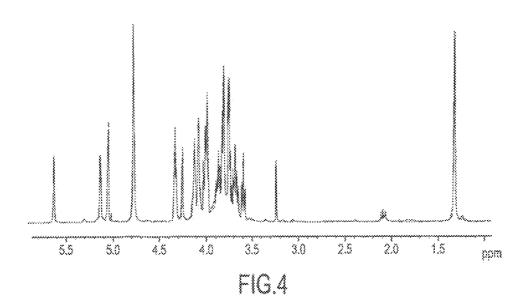




FIG.2

¹H-NMR spectrum of Ps6A and Ps6A-DAB derivative

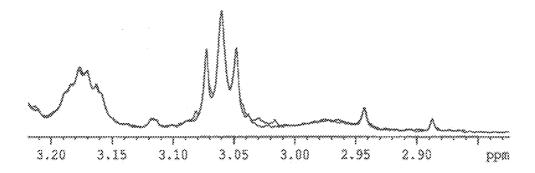


FIG.5

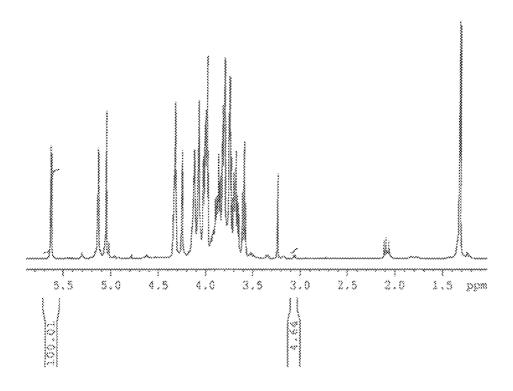


FIG.6

¹H-NMR spectrum of Ps7F and Ps7F-DAB derivative

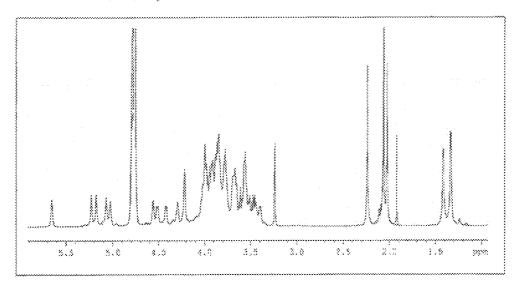


FIG.7

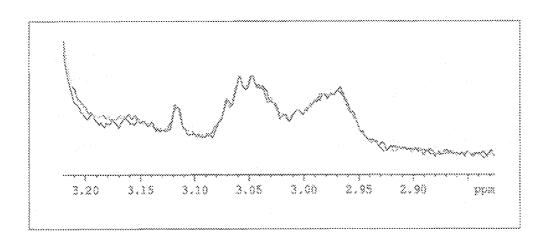
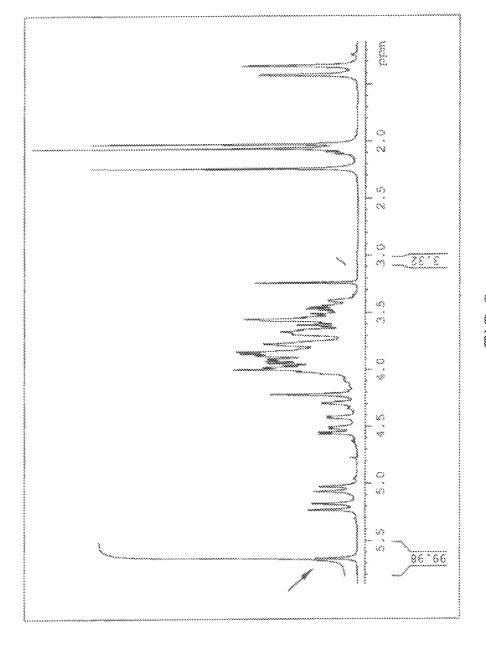



FIG.8

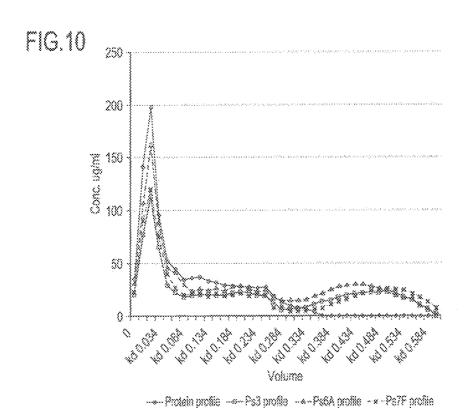
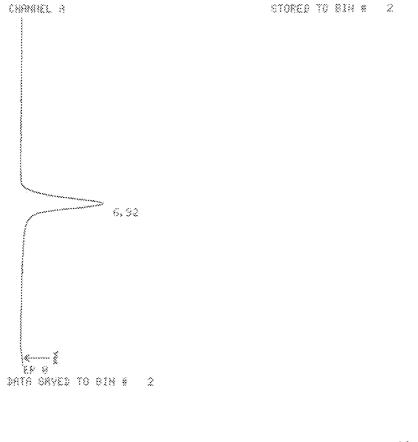
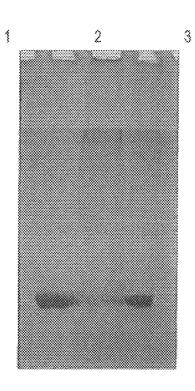
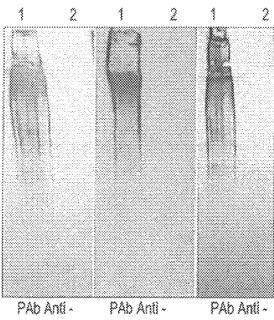




FIG. 11
40
35
35
26
20
15
10
5
10
Volume

Protein profile -- PsGA profile -* Ps7F profile

FILE 1, METHOD 0, RUN 2 DINCK 2 SIN 2 PEAK# AREAX RT AREA BC 1 198. 6.92 732249-81 732249 TOTAL 196.

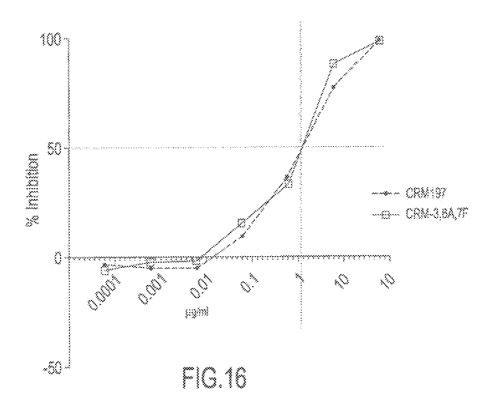

FIG.12

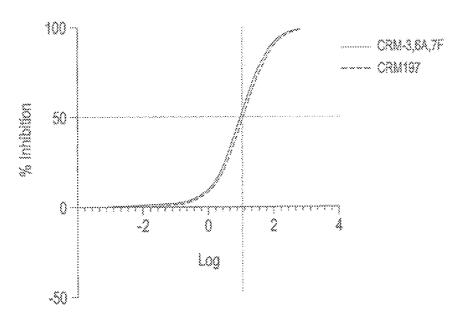


FRE 1. METHOD 8. RON 3 INDEX 3 SIN 3 arear 87 AREA BC PERK# 7,2 7,05 3,12 18,98 84,69 11,64 43179 81 46696 82 587727 83 393583 70388. 180.

FIG.13

FIG.14




 p_{s3}

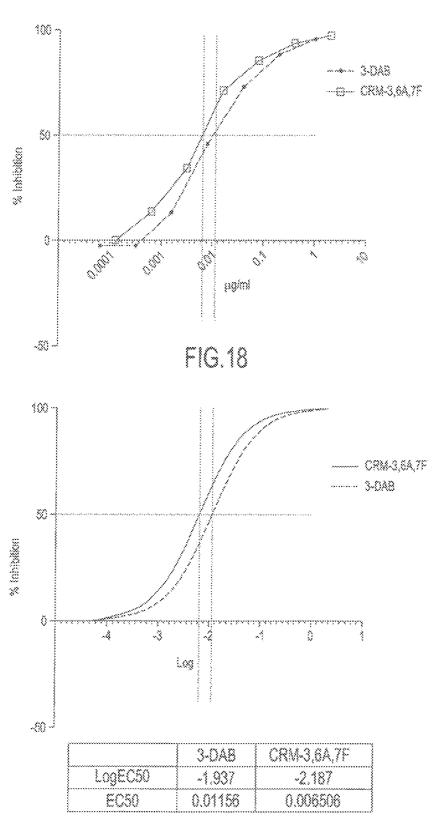
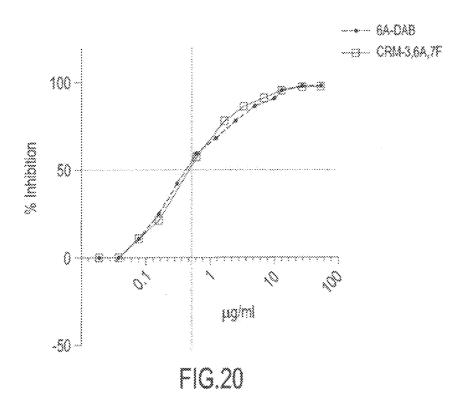
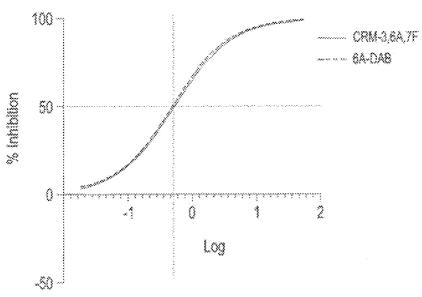
Ps6A

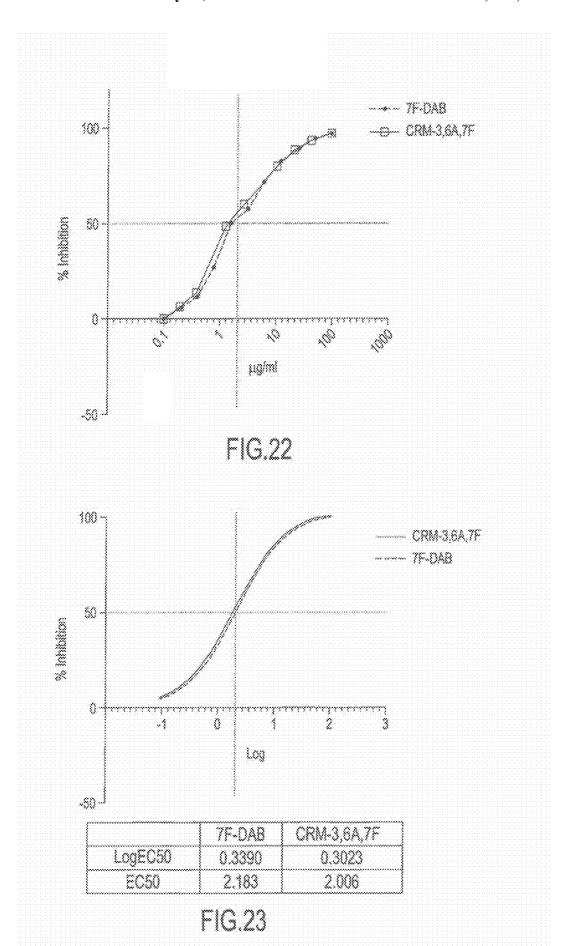
P₈7F

FIG.15

	CRM197	CRM-3,6A,7F
LogEC50	1.084	1.008
EC50	12.14	10.19

FIG.17


FIG.19

	6A-DAB	CRM-3,6A,7F
LogEC50	-0.2957	-0.2820
EC50	0.5061	0.5224

FIG.21

MULTIVALENT GLYCOCONJUGATE VACCINES

The present invention refers to new conjugate antigens expressing built-in multiple epitopes and to polyvalent gly- 5 coconjugate vaccines and formulations containing the same. In addition, the present invention concerns the use of these vaccines in particular for the protection of the human population, and in particular for the protection of the paediatric population from pulmonary and systemic infections 10 due to S. pneumoniae, N. meningitidis, H. influenzae, K. pneumoniae, M. tuberculosis, S. aureus, or from intestinal infections due to S. typhi, V. cholerae and E. coli. The present invention additionally refers to new polyvalent glycoconjugate vaccines for the protection from C. albicans 15 and E. coli systemic and genitourinary infections or for the protection from *M. bovis* infections in veterinary medicine.

Conjugate vaccines are the golden standard for measuring the nowadays success of clinical immunology. Since the early Ninety's, the advent of conjugate vaccines for preven- 20 tion of H. influenzae, N. meningitidis and S. pneumoniae have dramatically improved the quality of life of the paediatric population in the western World. Such an outstanding success is now going to be extended to the countries of the developing world thanks to the Immunization Expanded 25 Program sponsored by WHO and the recently implemented national immunization programs through the Advance Market Commitment (AMC) of several countries.

For instance, vaccines like "Prevnar", present in the western markets since the year 2000 (formerly in its 7-valent 30 formulation and now in its 13-valent formulation, both formulations containing single type-specific polysaccharide (Ps) of S. pneumoniae covalently conjugated to the carrier protein CRM197 (SEQ ID NO:1) is nowadays recommended by WHO to all countries of the world for an 35 unprecedented campaign of immunization for the protection of the paediatric population from the systemic infections due to S. pneumoniae (IPD or Invasive Pneumococcal Diseases) which may ultimately induce acute bacterial meningitis. mortality rate just because the time-interval of treatment is reduced to few hours from the beginning of the symptoms, so that the rational strategy to follow is the prevention and not the therapy of the disease.

Because the amount of bacterial species significantly 45 representative for the infections in humans by S. pneumoniae are many (up to 23 bacterial species out of the more than 90 species today known) and the strategy of using single type-specific Ps conjugated to a protein carrier demands a significant dosage of the carrier protein when the 50 vaccine formulation contains several conjugated antigens (e.g.: 13 or 15 or more if including the most epidemiologically important serotypes indicated by WHO as being drug resistant, which include the bacterial serotypes (according to the Danish nomenclature) 1, 2, 3, 4, 5, 6A, 6B, 6C, 7F, 8, 9N, 55 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, 33F) the possibility to reduce the amount of the carrier protein in the whole conjugate formulations is becoming a prioritary issue.

In fact, one must consider that a child undertaking immu- 60 nization with the conjugate vaccines of H. influenzae (one type-specific conjugate of type b Ps), N. meningitidis (four group-specific conjugates of group A,C,W135 and Y Ps) and S. pneumoniae (up-to thirteen type-specific conjugates of type 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 23F Ps) 65 for the prevention of broad-spectrum IPD, is going to be injected with eighteen conjugated antigens which have the

relevant burden of eighteen times the single, type-specific, dose of carrier protein. Furthermore, this dosage must be multiplied by three to four times, in consideration of the fact that three to four doses of the vaccines are necessary to confer full protection to the child in the first 2 years of age. All considered, the whole amount of carrier protein injected in a child, easily may reach doses of about 0.20 mg, at least in the case of the protein CRM197 (SEQ ID NO:1), with an obvious stress of the immune system which, however, so far seems to well tolerate such an amount of protein carrier for conferring helper T-cell dependency to the

host. However, by continuously up-grading the formulation of polyvalent vaccines like the one for prevention of S. pneumoniae infections, the amount of serotype Ps, ergo of carrier protein, is destined to climb over time.

In this regard, the author of the present invention has found a new category of conjugate antigens which feature the expression of multiple carbohydrate specificities, predetermined and built-in the molecular construct, which uses one mole (or micromole or nanomole or picomole, all representative for a fraction of it) of protein carrier for carrying at least one mole (or micromole or nanomole or picomole, all representative for a fraction of it) of each of at least three different type (or group)-specific carbohydrate antigens, therefore a conjugate expressing at least a total of four different antigen-related serological specificities.

In this way, a vaccine formulation encompassing as many as eighteen type-specific conjugate antigens, as an example, will be synthesized by only using one third (or 33%) of the amount of carrier protein needed in the nowadays available single-antigen-associated formulation, so that the immunogenic burden on the immune-system of the host will be significantly lower and, consequently, safer.

It is in fact well known in immunology, the existence of the phenomenon defined as "carrier protein-dependent immune-suppression and immune interference" due to the down-regulation of the immune system which becomes overwhelmed by the amount of protein antigen administered in repeated doses, for instance as a conjugate entity, espe-Indeed, this pathology is well documented as having a high 40 cially when significant serological titers of pre-existing, carrier protein-specific, memory IgG antibodies, are present in the treated host (Dagan R. et al., Vaccine 28 (34): 5513-5523, 2010). The significant reduction of the protein carrier dosage by the present molecular model, however, warrants the full expression of helper T-dependency, according to the previous experimental work pointing out that the anamnestic IgG immune response of mammalians towards a glycoconjugate antigen, is restricted to the hybrid linking area of the protein-carbohydrate epitopes with the specificity of the immune response confined to few monosaccharide residues of the covalently linked carbohydrate structure (Arndt and Porro, Immunobiology of Proteins and Peptides, Edited by M. Z. Atassi, Plenum Press, New York and London, Vol. 303, pages 129-148, 1991).

> The above mentioned paper investigates on different chemical strategies and different MW of the Ps of S. pneumoniae conjugated to the carrier protein CRM197 (SEQ ID NO:1), for obtaining the optimal conjugate structure when using mono functionally-activated carbohydrate antigens; also, the paper investigates the most likely molecular area in the conjugate construct for being responsible of the helper-T dependency in mammalians (through the analysis of the IgG isotype polyclonal antibodies) by molecular mapping of the conjugates synthesized.

> U.S. Pat. No. 4,711,779 in the name of the same applicant discloses a molecular model of tri-valent glycoprotein expressing immunogenicity in mammalians against a Gram-

positive and a Gram-negative bacterium. The document referred to a molecular construct which used oligosaccharides of low MW, covalently coupled to the carrier protein via a linker derivative introduced at the end-reducing group discovered after chemical hydrolysis at low temperature; that conjugate featured a maximum of three different specificities (to the Protein CRM197 (SEQ ID NO:1), to Ps type 6A, to Ps group C); it used mono-functional oligosaccharides; the molecular construct induced serological specificity to the carrier protein and to each of the two carried carbohydrate structures.

U.S. Pat. No. 5,306,492, also in the name of the same applicant, discloses oligosaccharide conjugate vaccines and an improved method for producing said oligosaccharidebased conjugate vaccines. The method involved the activation of the oligosaccharide haptens at high temperature and at the discovered end-reducing group before being covalently coupled to the carrier protein via a linker molecule; a typical conjugate expressed bivalent specificity (to the Pro- 20 tein CRM197 (SEQ ID NO:1) and to the type (or group)-Ps); it used mono-functional oligosaccharides; the molecular construct induced serological specificity to the carrier protein and to the single-carried carbohydrate structure.

EP 1501542 in the name of the same applicant discloses 25 a new method of producing HMW poly-disperse, crosslinked, polysaccharide-based conjugate antigens in high yield; a typical conjugate expressed specificity to the protein tetanus toxoid and to the carried type (or group)-Ps; it used protein carriers; the molecular construct induced serological specificity to the carrier protein and to the single-carried carbohydrate structure.

In addition, Porro M. et al. in Medecine Tropicale, 43: 129-132, 1983 first introduced the activation chemistry of a 35 meningococcal group B oligosaccharide (previously hydrolyzed in controlled acidic conditions) at its end-reducing group, by ammonia and via reductive amination at low temperature (25-37° C.); such mono-functional aminobis-succinimidyl ester of adipic acid and then conjugated to the amino groups of the Lysine residues of the carrier protein CRM197 (SEQ ID NO:1) The activated oligosaccharide antigen was mono-functional in the conjugation process and conjugation occurred without the previous activation of the 45 carrier protein CRM197. Moreover, Porro M. et al. in Molecular Immunology, 22: 907-919 (1985) first disclosed the activation chemistry of a pneumococcal type 6A oligosaccharide (previously hydrolyzed in controlled acidic conditions) at its end-reducing group, by ammonia and via 50 reductive amination in their paper titled "Specific antibodies to diphtheria toxin and type 6A pneumococcal capsular polysaccharide induced by a model of semi-synthetic glycoconjugate antigen". Such mono-functional amino-group bearing oligosaccharide was then activated by the bis- 55 succinimidyl ester of adipic acid and then conjugated to the amino groups of the Lysine residues of the carrier protein CRM197 (SEQ ID NO:1). The activated oligosaccharide antigen was mono-functional in the conjugation process and without the previous activation of the carrier protein.

In a later paper in Molecular Immunology, 23: 385-391, (1986), the same authors featured a two-steps conjugation process to the same protein carrier CRM197 (SEQ ID NO:1), of two capsular oligosaccharides (derived from a Gram-negative and a Gram-positive bacterium, respec- 65 tively) using the activation chemistry and the conjugation chemistry disclosed in the previous papers cited. Both the

activated oligosaccharide antigens were mono-functional in the conjugation process and without the previous activation of the carrier protein.

It is observed that the conjugate disclosed in such paper involves different end-point activated low MW capsular oligosaccharides (namely Ps of Streptococcus pneumoniae type 6A and Ps group C of Neisseria meningitidis). The use of such end-point activation provides low coupling yields therefore resulting in a disproportioned, huge, amount of carrier protein with respect to the maximum amount of the two carried oligosaccharide structures (around 31.2 µg of CRM197 (SEQ ID NO:1) with 4.8 µg of Ps 6A and 3 µg of Ps type C, see page 387, left column of the above referred 1986 paper). Finally, in a later paper (Porro M. Edited by R. Bell and G. Torrigiani (World Health Organization), pages 279-306; John Wiley & Sons Publishers, New York 1987, the author of the present invention summarizes the concepts and the technical procedures above referenced for conjugate antigens composed of protein carrier and a maximum of two different carbohydrate structures. In developing the above state of the art, the preferred (not limitative) embodiment of the basic molecular construct subject of the present invention is composed by a multivalent, preferably a tetra-valent semisynthetic glycoprotein which features built-in multiple epitopes and expresses its helper T-dependent immunogenic specificity "in vivo" to the protein CRM197 (SEQ ID NO:1), as well as to three carried type-specific Ps, for example Ps of S. pneumoniae. As an example, any triad of the Ps type 1, 2, 3, 4, 5, 6A, 6B, 6C, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, poly-functional polysaccharides coupled to poly-functional 30 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, 33F of S. pneumo*niae* such as the triad consisting of the Ps type 3,6A,7F may be conjugated to the carrier protein. As an example, the term tetra-valent is referred the carrier protein antigen (acting per se as an antigen and not merely as a carrier) plus the three carried Ps antigens.

Thus, the novel new molecular construct induces serological specificity to the carrier protein and to each of the three carried carbohydrate structures.

This semi-synthetic tetravalent antigen can be considered group bearing oligosaccharide was then activated by the 40 as the novel new precursor of a new generation of conjugate antigens expressing multiple specificities for obtaining vaccines with an always broader spectrum of protection against a variety of bacterial pathogens while drastically reducing the amount of carrier protein, in order to obtain a rational improvement on:

A) the cost of production of the vaccines;

B) their production efficiency in terms of improvement of coupling yield that allowed the synthesis of the glycoprotein with three (or more) Ps antigens (also featuring high MW); C) their production accuracy in terms of quantitative determination from the serological point of view of the amount of covalently bound Ps by using the specific inhibition-ELISA assay reported in the present application, for an accurate quantification of the multiple carbohydrate antigens present in the disclosed molecular construct, on the basis of immunochemical, rather than chemical quantification of the cited prior art (see Porro et al. 1986), especially in the various cases where highly significant similarities exist among specie-specific carbohydrate structures;

60 D) their safety as related to the lower amount of the protein dosage impacting on the immune system of the target population. In fact, said protein dosage is ca. 30% (around 10 μg of protein in the dose involving a whole 15-valent formulation at 2 µg protein/triad/dose) of the protein dose present in the conjugate of CRM197 (SEQ ID NO:1) with the two Ps of the paper Porro et al., 1986. Such reduction would not be predictable for the skilled person in such -5

amount based on the available stoichiometry reported in the paper where an immunizing dose would contain at least 31.2 μg of CRM197 (SEQ ID NO:1); therefore, for a multivalent composition comprising 13 or 15 conjugated antigens, even assuming the possibility of preparing, according to the previous chemistry, the multiple tetravalent molecular model detailed of the invention, the amount of protein CRM197 (SEQ ID NO:1) in the formulation would be $31.2{\times}15/3{=}156.0~\mu g$ vs. 10 μg of the multivalent conjugate of the invention; and, consequently:

E) the public utility of such conjugate vaccines.

The present invention opens new avenues in the field of clinical immunology and vaccinology. In fact, the built-in multiple antigenicity of the disclosed molecular construct, 15 specific for different bacterial antigens, actually parallels, in the innovative field of poly-pharmacology, the synthesis of a drug designed a priori for simultaneously reaching multiple receptors of pharmacological relevance, so allowing the reduction of the number of drugs to be administered in 20 associated form (Besnard J. et al., Nature, 492: 215-220, 2012). Therefore, it is an object of the present invention an antigenic multivalent molecular construct consisting of a basic unit comprising a helper-T dependent carrier protein covalently bound to a minimum of three carbohydrate 25 structures of different serological specificity, wherein each carbohydrate structure comprises at least one of the repeating basic antigenic epitope consisting of a minimum of five to twelve monosaccharide residues, preferably a minimum of eight to twelve monosaccharide residues, as assessed by 30 molecular mass determination and NMR spectroscopy (equivalent to different numbers of Basic Repeating Units depending from homologous or heterologous sequences), said repeating basic antigenic epitopes being assessed by reactivity with type-specific or group-specific polyclonal or 35 monoclonal antibodies through the determination of their respective MIC₅₀ values in the inhibition of their homologous Polysaccharide-Antibody reference system. According to the present invention, the term carbohydrate structures is intended to comprise oligosaccharides (natural or synthetic) 40 or polysaccharides (such as capsular polysaccharides).

The T-helper dependent carrier protein of the antigenic multivalent molecular construct according to the invention is covalently bound to a minimum of three (for example three or four or five) carbohydrate structures of different serological specificity up to the limit of reactivity of the nucleophylic amino groups of the structural amino acids, mainly Lys but also, for example, of the basic features of Arg and Hys, present in the carrier protein structure involved in the coupling reaction.

According to preferred embodiments of the present invention the helper-T dependent carrier protein covalently bound to a minimum of three different carbohydrate structures of different serological specificity, is selected between the group of natural diphtheria mutant protein CRM197 (SEQ 55 ID NO:1) (PRF 1007216A), diphtheria toxoid (SEQ ID NO:2) CAE11230.1 of the homologous toxin), tetanus toxoid (SEQ ID NO:3, AAK72964.2 of the homologous toxin), Protein D from Haemophilus influenzae (SEQ ID NO:4) (AAA24998.1); pneumococcal surface proteins (SEQ ID 60 NO:5, SEQ ID NO:6), (PspA EMBL CBW33751.1 and PspC EMBL ACF56456.1); pneumococcal toxin (SEQ ID NO:7) (Pneumolysin EMBL ACF56060.1) or variants and derivatives thereof. Particularly, when the tetanus toxoid (SEQ ID NO:3) is employed it is preferred to employ a 65 chemically derivatized toxoid by adipic acid dihydrazide spacer (tetanus toxoid-ADH). According to the most pre6

ferred embodiment of the present invention the carrier protein is the natural diphtheria mutant protein CRM197 (SEQ ID NO:1).

Such protein was first reported by Uchida and Pappenheimer in the mid of the seventy's (Uchida T. et al., J. Biol. Chem. 248, 3838-3844, 1973) and its possible use as novel immunogen against diphtheria toxin, as being in immunogenic correlation with diphtheria toxoid, was already reported by the applicant (Porro M. et al., J. Infect. Dis., 142 (5), 716-724, 1980). Since then, the applicant used CRM197 (SEQ ID NO:1) as ideal helper-T dependent carrier protein for carbohydrate antigens, once it became understood the reasons for the peculiar immunogenic characteristics of the latter group of antigens in human subjects, in the specific age involving the maturation of the immune system (from ca. 2 months to around 2 years of age). The protein CRM197 (SEQ ID NO:1) is composed by a sequence of 535 amino acids, just like diphtheria toxin (Giannini G. et al., Nucl. Acid Res., 12, 4063-4069, 1984) but shows a point-mutation at the amino acid in position 52, where Glu replaces Gly. Its antigenicity has been reported as mainly directed to four areas of the sequence, when using monoclonal antibodies, namely the AA sequences 1-156, 157-193, 293-345 and 465-535 (Zucker D. and Murphy J. R., Mol. Immunol. 21, 785-793,1984). The protein also features 39 Lys residues and one amino terminal group, for a total of reactive 40 amino groups, which are purposely used for the chemical reactions involved in the various conjugation strategies.

The carrier protein CRM197 (SEQ ID NO:1) of the conjugate of the invention is usually prepared using the clones of *C. diphtheriae* $C7(\beta197)^{tox-}$ but it may also be obtained by clones of *P. fluorescens*, among others.

According to preferred embodiments of the antigenic multivalent molecular construct of the invention the carried carbohydrate structures are selected among, but not limited to, Ps of Streptococcus pneumoniae (type 1, 2, 3, 4, 5, 6A, 6B, 6C, 6D, 7F, 8, 9N, 9V, 10A, 11A, 11B, 11C, 11F, 12F, 14, 15A, 15B, 15C, 17F, 18C, 19A, 19F, 20, 22F, 23A, 23F, 33F, 35B, among Ps of Neisseria meningitidis (group A,C, W135 and Y), Haemophilus influenzae (type b), Mycobacterium tuberculosis and Klebsiella pneumoniae (i.e. K1-K20 antigens), Salmonella typhi (type Vi), Escherichia Coli (type K1), Vibrio cholerae or a combination thereof. Preferably, such combination of Ps is carried out among Ps belonging to one or more infectious agent causing systemic and pulmonary diseases (Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenza, Mycobacterium tuberculosis, Staphylococcus aureus and Klebsiella pneumoniae) in addition to Ps belonging to one or more infectious agents 50 causing intestinal diseases (Salmonella typhi (type Vi), Escherichia Coli (type K1), Vibrio cholerae) or Ps belonging to other infectious agents like Candida albicans causing systemic and genitourinary infections.

Based on the above embodiments, it is also possible to prepare hybrid molecular constructs where the carrier protein works as helper T-dependent vector for antigens of *S. pneumoniae* and *N. meningitidis* and other antigens simultaneously. These hybrid molecular constructs do not exist in nature as the antigenic surface of Gram-negative and Grampositive bacteria differ significantly between them in terms of molecular architecture of the bacterial cell and the biologic mechanisms through which they induce protective immunity in mammalian hosts. For instance, while protective immunity induced against the capsular Ps of the Gramnegative bacterium *N. meningitidis* involves complement-dependent bactericidal activity, that induced by the Grampositive bacterium *S. pneumoniae* involves opsono-

phagocytic activity, yet complement-dependent. In the case of such a hybrid category of synthetic antigens both pathways are specifically induced (Porro M. et al., Molecular Immunol., 23: 385-391 (1986), a fundamental difference shown from the properties of each single natural antigens.

The present invention contemplates also the association of the antigenic multivalent molecular construct according to the invention with the class of LPS-based vaccines defined as Endotoxoids. Endotoxoids are nontoxic complexes of LPS with SAEP (Synthetic Anti Endotoxin Peptides) which have been shown to be useful in administering LPS as immunogen to mammalians (Rustici A. et al., Science, 259:361-365, 1993).

Such association may contemplate the separate, simultaneous or sequential use or administration of the antigenic multivalent molecular construct and the Endotoxoid(s) of gram negative bacteria. The Endotoxoid may be selected among Endotoxoid B (*N. meningitidis* Group B), Endotoxoid of *E. coli*, *S. typhi*, *V. cholerae*, *S. enteritidis*, *B. pertussis*.

Hybrid molecules according to the described molecular construct may also include the capsular polysaccharide of Mycobacterium tuberculosis, a pathogen which is continu- 25 ously expanding throughout the world and for which a "sterilizing" vaccine, that is a vaccine which is protective in the bloodstream and in the lungs of the host, still does not exist. The polysaccharide capsule of M. tuberculosis predominantly consists of an α -D-(1 \rightarrow 4)-glucan polymer with α -(1 \rightarrow 6) branches which displays structural similarities with cytosolic glycogen. Mycobacterial α-glucan has an apparent molecular mass of 1.3×10^7 and is expressed both in vitro and in vivo (Schwebach, J. R., et al. 2002. Infect. 35 Immun. 70:2566-2575); also, accompanying antigens like the glycolipids LAM (Lipoarabinomannan) and PIM (phosphatidylinositol mannoside) are possibly associated with the polysaccharide capsule. One or all of these carbohydrate antigens present in the capsular layer may then be conjugated to a carrier protein like CRM197 (SEQ ID NO:1), as an example, and to become part of the molecular construct of the invention.

It is also possible to foresee an antigenic multivalent 45 molecular construct wherein the carried carbohydrate structures are those belonging to *Mycobacterium bovis* for the prevention of the infection affecting, other than humans, cattle, pigs, domestic cats, equids or sheep cattle.

Another case where the multivalent molecular construct of the invention can be applied with substantial advantages in terms of having a rational formulation design for a new vaccine, is that related to the pathogenic features of the fungus Candida albicans. The commensal fungus Candida 55 albicans causes mucosal candidiasis in immunocompromised patients, which includes oropharyngeal, esophageal, gastrointestinal, and vaginal infections. Vulvovaginal candidiasis (VVC) and antimycotic-refractory recurrent VVC is also a frequent problem in healthy childbearing women. Both these mucosal infections can affect the quality of life and finding a new vaccine against candidal infections would be a new important tool to prevent mucosal candidiasis and would be of benefit to many patients. An effective systemic $_{65}$ and local vaccine still does not exist in the prevention of such chronic, recurrent, infections. The antigenic repertoire

8

of *C. albicans* contains, among others, several antigens of glucidic nature, namely the 1,3- β -glucan (Bromuro et al., 2010), and the L-mannans as β -1,2-mannotriose (Han et al., 2010; Xin et al., 2008). Such structurally different carbohydrate antigens can be all conjugated to a carrier protein of choice for preparing a multivalent entity like the one here disclosed, which to some extent can mimic the whole, carbohydrate-based, antigenic structure of the pathogen, which, in the case of genitourinary infections, may be also rationally associated with *E. coli* carbohydrate-based antigens in conjugated form.

Furthermore, another case where the multivalent molecular construct of the invention can be applied with substantial advantages in terms of having a rational formulation design for a new vaccine, is that related to the pathogenic features of Staphylococcus aureus. This pathogen, as reported by O'Riordan and Lee Clin. Microbiol. Rev., 17:218-234, 2004 and below synthesized, is an opportunistic bacterial pathogen responsible for a diverse spectrum of human and animal diseases. Staphylococcus is also a major cause of wound infections and has the invasive potential to induce osteomyelitis, endocarditis, and bacteremia, leading to secondary infections in any of the major organ systems. Staphylococcal infections occur most frequently when the skin or mucosal barriers are breached, following insertion of a foreign body, and in hosts with compromised immune systems. Because of the prevalence of antibiotic-resistant strains and the recent emergence of clinical isolates resistant to vancomycin, control of S. aureus has become increasingly difficult. Staphylococcus plays a major role in nosocomial infections and recently has been acknowledged as an important cause of community-acquired infections. Community acquired S. aureus infections often occur in otherwise healthy individuals who lack the expected risk factors for S. aureus infections, e.g., recent hospitalization or surgery, residence in a long-term-care facility, or use of injected drugs. Among other antigens, the bacterial component that mainly affect the pathogenesis of S. aureus infections include a capsular polysaccharide, which allows staphylococci to adhere to eukaryotic membranes, resist opsonophagocytosis, lyse eukaryotic cells, and trigger the production of a cascade of host immunomodulating molecules. Capsules from at least 18 S. aureus strains have been described and at least four of them characterized. Each contains hexosaminuronic acids. Biochemical characterizations have been performed on some polysaccharides purified. Strain M expresses a type 1 capsule with the following structure: $(\rightarrow 4)$ - α -d-GalNAcA- $(1\rightarrow 4)-\alpha$ -d-GalNAcA- $(1\rightarrow 3)-\alpha$ -d-FucNAc- $(1\rightarrow)_n$; a taurine residue is amide linked to every fourth d-GalNAcA residue. Two other strains, D and SA1 mucoid, produce capsules that are serologically and biochemically similar to that produced by strain M. The capsule of serotype 2 has the $(\rightarrow 4)$ -β-α-GlcNAcA- $(1\rightarrow 4)$ -β-dGlcNAcA- $(1\rightarrow 4)$ -β-dClcNAcA- $(1\rightarrow$ alanyl)- $(1\rightarrow)_n$. Type 5 and 8 capsular polysaccharides (CP5 and CP8, respectively) are structurally very similar to each other and to the capsule made by strain T. Type 5 has the $(\rightarrow 4)$ -3-O—Ac-β-α-MβηNAoA- $(1\rightarrow 4)$ -1-Fucstructure NAc- $(1\rightarrow 3)$ - β -d-Fuc NAc- $(1\rightarrow)_n$, and type 8 has the struc- $(\rightarrow 3)$ -4-O-Ao- β -d-ManNAcA- $(1\rightarrow 3)$ - α -1-FucNAc- $(1\rightarrow 3)$ -β-d-FucNAc- $(1\rightarrow)_n$. Type 5 and 8 polysaccharides differ only in the linkages between the sugars and in the sites of O-acetylation of the mannosaminuronic acid residues, yet they are serologically distinct.

Very recently (Nanra et al., Human Vaccines and Immunotherapeutics, 9:3, 480-487, 2013) has been reported the role of the capsular Ps of *S. aureus* in preventing the

non-specific OPA (opsonophagocytosis) killing in the presence of variable amount of complement but in the absence of specific antibodies to Ps; in contrast, when in the presence of specific antibodies to Ps raised in rhesus macaques by CRM197-Ps conjugates of type 5 and 8, OPA killing was very efficient on *S. aureus*, underlining the fundamental role of the antibodies to the Ps capsule for eliciting the immunological defenses to this pathogen when in capsulated form.

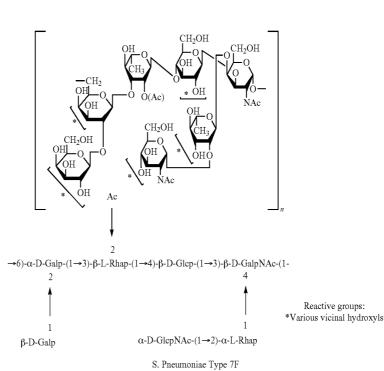
Accordingly, it is also the subject of the present application the innovative formulation of a vaccine against *S.* ¹⁰ *aureus*, composed of a molecular construct in the form of glycoconjugate carrying at least three different type-specific Ps antigens of *S. aureus* on the carrier protein of choice, most preferably CRM197 (SEQ ID NO:1).

According to one preferred embodiment the carried carbohydrate structures of *S. pneumoniae* antigens selected according to a specific embodiment of the invention are the polysaccharide type 3, 6A, 7F.

The polysaccharide type 3 responds to the following structure (Reeves R. E. and Goebels W. F., J. Biol. Chem., 20 139: 511-519, 1941):

S. PneumoniaeType 3 →4)-β-D-Glcp-(1→3)-β-D-GlcpA-(1-Reactivegroups; *2,3-hydroxyls

The structure features one pair of —OH groups/Base Repeating Unit (BRU) which means there is a possibility to activate it at various degrees using the method disclosed by the Applicant in the above mentioned Patent EP 1501542.


The polysaccharide type 6A responds to the following structure (Rebers P. A. and Heidelberger M., J. Am. Chem. Soc., 83: 3056-3059, 1961):

S. Pneumoniae Type 6A

*3,4 Hydroxyls

The structure features one pair of —OH groups/Base Repeating Unit (BRU) which means there is a large possibility to activate it at various degrees using the method disclosed by the applicant in EP 1501542.

The polysaccharide type 7F responds to the following structure (Moreau M. et al., Carbohydrate Res., 182 (1): 79-99, 1988):

The structure features well five pairs of —OH groups/ Base Repeating Unit (BRU) which means there is a huge possibility to activate it at various degrees using the method disclosed in EP 1501542.

Other possible multivalent conjugates (in addition or in 5 alternative to CRM197-3, 6A, 7F) where the protein CRM197 (SEQ ID NO:1) (or any other immunogenic protein) serves as helper T-dependent carrier of S. pneumoniae polysaccharides are selected between the following non limitative configuration of triads:

CRM197-4,5,9V; CRM197-1,6B,14; CRM197-18C,19A, 23F; CRM197-6C,19F, 22F; CRM197-12F,15B,33F.

It goes without saying that any combination (triad or quartet or more) of the Ps type 1, 2, 3, 4, 5, 6A, 6B, 6C, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 15 22F, 23F, 33F of S. pneumoniae may be contemplated.

According to another exemplificative embodiment the multivalent conjugates of the invention may contemplate the following triads of Ps: CRM197-3,6A,7F; CRM197-5,9V, 19F; CRM197-1,14,19A; CRM197-22F,23F,33F; CRM197- 20

The antigenic multivalent molecular construct of the invention may be either in monomeric or polymeric form. The invention is also directed to one or more than one antigenic multivalent molecular construct as above defined 25 in a vaccine for the protection of a subject (preferably belonging to the human paediatric population) from the infections due to at least one agent selected among S. pneumoniae, N. meningitidis, H. influenzae, K. pneumoniae, M. tuberculosis, S. typhi, S. aureus and E. coli. Preferably, 30 the combination of the antigenic multivalent molecular construct of the invention will be carried out by selecting antigenic multivalent molecular construct carrying Ps belonging to one or more infectious agent causing systemic Neisseria meningitidis, Haemophilus influenzae, Mycobacterium tuberculosis, Staphylococcus aureus and Klebsiella pneumoniae) in addition to Ps belonging to one or more infectious agent causing intestinal diseases (Salmonella originating from other infectious agents like the commensal fungus Candida albicans causing genitourinary infections also in association with the pathogen E. coli.

It is in fact possible to foresee a vaccine against Candida albicans and Escherichia coli infections (preferably for the 45 immunization of the female population) comprising one or more antigenic multivalent molecular construct wherein the carried carbohydrate structures are those belonging to Candida albicans and Escherichia coli.

Another aspect of the present invention contemplates a 50 vaccine against Mycobacterium bovis infections for the immunization of cattle, pigs, domestic cats, equids or sheep-

Furthermore, the invention features a vaccine formulation comprising one or more molecular constructs of different 55 antigenic specificities according to the present invention, in a physiologically acceptable vehicle, optionally together with an adjuvant and/or excipients pharmaceutically accept-

The invention is further directed to a broad-spectrum 60 polyvalent vaccine formulation as above defined, for use in human medical field for the protection of a subject from the infections due to at least one agent selected among S. pneumoniae, N. meningitidis,

H. influenzae, K. pneumoniae, S. aureus, M. tuberculosis, S. 65 typhi, E. coli, V. cholerae and C. albicans. Preferably, said subject belongs to the paediatric population.

12

In addition, the molecular model disclosed in the present application is the base for a broad-spectrum polyvalent vaccine for the prevention of type-specific S. pneumoniae bacterial infections containing from a minimum of 7 types (for example 9, 12, 15, 18, 21, 24) and up-to 25 different carbohydrate structures of type

I. 2. 3. 4. 5. 6A. 6B. 6C. 7F. 8. 9N. 9V. 10A. 11A. 12F. 14. 15B, 17F, 18 C, 19A, 19F, 20, 22F, 23F, 33F.

It is also possible to foresee a vaccine contemplating the combination of one or more tetravalent antigenic molecular construct (carrying three Ps) of the

invention with one bivalent or trivalent antigenic construct (carrying one or two Ps) or alternatively with one pentavalent antigenic construct (carrying four Ps), when the final number of carbohydrate structures that the skilled person intends to achieve is different from a multiple of three.

When considering the basic conjugate carrying three moles (or fractions of it) of structurally different carbohydrate antigens per mole (or fractions of it) of carrier protein, the amount of carrier protein can be reduced to ca. 30% of that present in any of the today available pneumococcal conjugate formulations for the paediatric population (e.g.: Prevnar which is the object of the patent EP1868645, and Synflorix).

A practical example of broad-spectrum (e.g.: 18-valent) formulation of a vaccine for the prevention of IPD (Invasive Pneumococcal Disease) due to S. pneumoniae, which is based on the antigenic multivalent molecular construct disclosed in this application, is the association of at least three, four, five or preferably all the following multivalent conjugates, where the protein CRM197 (or any other immunogenic protein) serves as helper T-dependent carrier:

CRM197-3,6A,7F; CRM197-4,5,9V; CRM197-1,6B,14; and pulmonary diseases (such as Streptococcus pneumoniae, 35 CRM197-18C,19A,23F; CRM197-6C,19F,22F; CRM197-12F,15B,33F. In such an example, just six multivalent conjugates cover the broad-spectrum of serotypes selected.

In sharp contrast, nowadays available formulations would require the association of eighteen conjugates. It goes withtyphi (type Vi), Escherichia Coli (type Kl, V. cholerae) or Ps 40 out saying that any combination (triad or quartet) of the Ps type 1, 2, 3, 4, 5, 6A, 6B, 6C, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F,

> 20, 22F, 23F, 33F of S. pneumoniae may be contemplated. Another preferred example of broad-spectrum (e.g.: 15-valent) formulation of a vaccine for the prevention of IPD (Invasive Pneumococcal Disease) due to S. pneumoniae, comprises multivalent conjugates of the invention contemplating the following triads of Ps: CRM197-3,6A,7F; CRM197-5,9V,19F; CRM197-1,14,19A;

CRM197-22F,23F,33F; CRM197-4,6B,18C.

The injected amount of protein carrier in the former formulation is therefore ca. 30% (on weight basis) of the amount of carrier protein present in the latter formulation, with a highly significant reduction of at least 70% of it (on weight basis).

To make a comparison, the total amount of carrier protein today present in the 13-valent "Prevnar" vaccine (formulation composed of 13-associated monovalent antigens, object of the patent EP 1868645) is ca. 32 μg, at the clinical dose of ca. 2 µg Protein/ca. 2 µg of each Ps antigen conjugated, for a total of 31 µg of Ps antigens [average ratio (R) Protein/Ps (w/w)=1.03]; at about the same ratio Protein/ type-specific Ps (as shown by the above disclosed multivalent conjugate CRM197-3,6A,7F), the total amount of carrier protein in the exemplified 18-valent formulation is just 12 μg or the 37.5% of that present in the 13-valent formulation of "Prevnar" (data on the composition of the "Prev-

13

nar" vaccine and "Synflorix" vaccine are from the publically available documents released from US-FDA and EMA).

Additional examples of vaccine formulations are based on the antigenic multivalent molecular construct according to the invention for the prevention of group-specific *N. men- 5 ingitidis* bacterial infections (group A, C,W135,Y).

The same strategy relative to the conjugation process and controls above disclosed for the multivalent antigenic molecular construct of *S. pneumoniae* type 3, 6A and IF, can be used for other carbohydrate structures like those of *N.* 10 *meningitidis*.

In this case, just one multivalent antigen containing the group-specific carbohydrate structures (polysaccharide A, C,W135 and Y) may constitute the formulation of the vaccine.

Therefore it is another object of the invention a broad spectrum vaccine formulation for the prevention of the infection due to *Neisseria meningitidis* comprising an antigenic multivalent molecular construct containing the group-specific carbohydrate structures A, C, W135 and Y.

According to a preferred embodiment the present invention is directed to a broad spectrum vaccine formulation for the prevention of the pulmonary infection (preferably in pediatric population) due to more than one infectious agent selected among *Streptococcus pneumoniae*, *Neisseria men-* 25 *ingitidis*, *Haemophilus influenzae*, *Staphylococcus aureus*, *Klebsiella pneumoniae*, *M. tuberculosis*, comprising more than one antigenic multivalent molecular construct containing said agent-specific carbohydrate structures. Alternatively, the present invention relates to a broad spectrum vaccine formulation for the prevention of the intestinal infections (in the pediatric or adult human population) due to more than one infectious agent selected between *Salmonella typhi*, *Escherichia coli* and *Vibrio cholera*.

Another embodiment foresees a broad spectrum vaccine 35 formulation for the prevention of the systemic or genitourinary infections due to pathogens like the commensal fungus *C. albicans* and *Escherichia coli*, said vaccine comprising more than one antigenic multivalent molecular construct containing said agent-specific carbohydrate structures.

According to a particular embodiment of the present invention the aforementioned vaccine formulations may be administered separately, simultaneously or sequentially with an Endotoxoid antigen of gram negative bacteria, said Endotoxoid being selected in the group consisting of Endo-45 toxoid of *N. meningitidis Group B, E. coli, S. typhi, V. cholerae, S. enteritidis, B. pertussis.*

When considering the basic conjugate construct carrying the four structurally different carbohydrate antigens, the amount of carrier protein can be reduced to at least 25% of 50 that present in any of the today available associated conjugate formulations (e.g.: "Menactra" and "Menveo") according to the public available documents on their composition and formulation (a total of 48 and 47 μ g/dose of Diphtheria Toxoid (SEQ ID NO:2) and CRM197 (SEQ ID NO:1), 55 respectively) released from US-FDA and EMA.

The immunogenic dose of polyvalent formulations of the molecular construct disclosed in this application is referred to the dose of each carbohydrate structure carried. In this respect, the dose may range between 0.1 to 10 μ g, preferably 60 1 μ g, of each conjugated carbohydrate antigen in infants and children. Those that are expert in the clinical field will help finding the optimal dose in the target population.

Preferably, said vaccine formulations further comprises a mineral or a chemically synthetic or a biological adjuvant. 65 Mineral or chemically synthetic or biological adjuvants can be used with the molecular construct disclosed in this

14

application, in order to benefit from any immunological boost that can be effective in lowering the optimal immunogenic dose in humans so to further reduce the total amount of carrier protein. Particularly, preferred inorganic adjuvants in the vaccine formulations according to the invention for use in human beings are selected between Aluminium Phosphate (AlPO₄) and Aluminium Hydroxide; preferred organic adjuvants are selected from squalene-based adjuvants such as MF59, QF 21, Addavax; preferred bacterial antigens are selected between Monophosphoryl-lipid A, Trehalose dicorynomycolate (Ribi's adjuvant). In vaccine formulations for use in the veterinary field Freund's adjuvant (complete or incomplete) is preferred. The dose of adjuvant may range between 0.1-1 mg/dose, preferably being 0.5 mg/dose.

More preferably, such formulation is suitable for the administration by subcutaneous or intramuscular or intradermal or transcutaneous route. Conveniently, such administration may be carried out by conventional syringe injection or needle-free tools.

The vaccine formulations according to the invention may be administered according to a protocol which requires single or multiple administrations, according to the physician, pediatrician or veterinary instructions.

The present invention is further directed to a conjugation process for preparing the antigenic multivalent molecular construct which employs the chemistry disclosed in the patent EP 1501542, where each of the at least three carbohydrate structures is chemically activated to mono-functionality or polyfunctionality by O-de-hydrogen uncoupling via oxidation and reductive amination forming imine reduced bonds with an alkyl diamine spacer, then derivatized to active esters, such ester-derivative carbohydrate structures being finally and simultaneously coupled or step-by-step coupled to the amino groups of the polyfunctional carrier protein through the formation of amide bonds.

Preferably, said carbohydrate structures are chemically activated in their corresponding diamine butyric acid derivatives and the active esters are succinimidyl esters.

As an example, the chemical activation of the triad of polysaccharide type 3, 6A, 7F (or of the other preferred triad 4,5,9V; 1,6B,14; 18C,19A,23F; 6C,19F,22F; 12F,15B,33F; 5,9V,19F; 1,14,19A;

22F,23F,33F; 4,6B,18C) of *S. pneumoniae* to the homologous Ps-DAB (diamine butyric acid derivative) has been performed according to the process disclosed by the Applicant in Claim 1 of EP 1501542, and the polyfunctional carrier protein was CRM197 (SEQ ID NO:1).

Alternatively, the conjugation process for preparing the antigenic multivalent molecular construct employs the chemistry disclosed in Claim 8 of EP 1501542 involving simultaneous coupling or step-by-step coupling of the amino groups of the poly-functional carrier protein with the at least three different carbohydrate structures, via reductive amination forming imine-reduced bond, such carbohydrate structures being previously activated to monofunctionality or polyfunctionality, with or without spacers, by O-de-hydrogen uncoupling via oxidation. As it can be inferred, the above disclosed molecular model can be further developed to contain more than three (for example four or five) different carbohydrate structures per single mole (or fractions of it) of protein carrier, this possibility depending from three main parameters of the molecular construct:

- a) the physical-chemical features of the carrier protein, which structure should feature the highest possible amount of Lysine residues (source of reactive —NH₂ groups);
- b) the "ad hoc" selected polydisperse MW of the different carbohydrate structures featuring an optimal activation rate

while limiting the negative effects of steric hindrance phenomena in the coupling reaction, and

c) the efficiency of the chemistry used for the activation of the different carbohydrate structures and for the synthesis of the molecular construct (the preferred chemistry for a high efficiency in the optimal activation of carbohydrate structures is the O-de-hydrogen uncoupling via oxidation, with or without spacer, while that for a high efficiency in the conjugation reaction is through amide bond formation via active esters between the carbohydrate structures and the carrier protein; also preferred for the conjugation reaction, is the chemistry which uses the formation of an imine reduced bond between the O-de-hydrogen uncoupling oxidized carbohydrate structures, with or without spacers, and the carrier protein, via direct reductive amination).

The process of conjugation employed according to the invention foresees the multi-step activation of the (at least three) polysaccharides (that consequently may have indifferently, although homogeneously, either low or high MW) 20 in order to improve the coupling yields with the carrier protein. This is different from the conjugation process of the prior art (see Porro et al. Molecular Immunology, Vol. 23, pages 385-391, 1986) involving the end-point activation at low temperature of the low MW Ps employed which, 25 consequently, resulted in a low coupling yield while not involving the molecular cross-linking of the conjugate.

Another difference with the previous model lies in the stoichiometric features of that previous construct (w/w ratio Protein/Ps) as well as in the determination of the Ps 30 employed which is carried out by immunochemistry in the present invention vs the chemistry approach used in the prior art. This has allowed the possibility in the present invention to determine the quantitative amount of Ps having very similar structures when present in the same molecular con- 35 struct

Finally, the present invention is directed to the antigenic multivalent molecular constructs which are obtainable through the conjugation processes above disclosed.

The present invention will be further illustrated according 40 to preferred embodiments with particular reference to the enclosed figures, wherein:

FIG. 1 shows a comparison between ¹H-NMR spectrum of native Ps 3 (grey) and activated Ps 3-DAB 50% Ox (black) of Ps 3 and Psi-DAB derivative.

FIG. 2 shows ¹H-NMR spectra of Ps 3-DAB 50% Ox, with diffusion filters. Spectrum in black 60% GRAD, spectrum in gray 2% GRAD assessing absence of free DAB in the derivative.

FIG. 3 shows Ps 3-DAB derivative, 50% Ox, ¹H-NMR 50 spectrum and quantization of DAB activation (2% on molar basis).

FIG. 4 shows a comparison between the ¹H-NMR spectrum of native Ps6A (grey) and activated Ps6A-DAB derivative 50% Ox (black).

FIG. 5 shows ¹H-NMR spectra of Ps 6A-DAB 50% Ox, with diffusion filters. Spectrum in black 60% GRAD, spectrum in gray 2% GRAD assessing absence of free DAB in the derivative.

FIG. **6** shows Ps 6A-DAB derivative, 50% Ox, ¹H-NMR 60 spectrum and quantization of DAB activation (2.3% on molar basis).

FIG. 7 shows a comparison between the ¹H-NMR spectrum of native Ps7F (grey) and activated Ps7F-DAB derivative 10% Ox (black). The signal at 1.92 ppm, only present 65 in the native Ps, is due to free acetate ion. OAc signal at 2.24 ppm remains the same after DAB activation.

16

FIG. 8 shows ¹H-NMR spectra of Ps 7F-DAB 10% Ox, with diffusion filters. Spectrum in black 60% GRAD, spectrum in gray 2% GRAD assessing absence of free DAB in the derivative.

FIG. 9: shows Ps 7F-DAB derivative 10% Ox, 1 H-NMR spectrum and quantization of DAB activation (1.7% on molar basis). Arrow indicates the reference signal at 5.65 ppm (α -proton of glucose or galactose) for quantization of the DAB activation.

FIG. 10 shows GPC analysis of the antigenic multivalent molecular construct CRM197-3.6A,7F.

FIG. 11 shows the GPC analysis of the four components just mixed together (CRM197+Ps 3-DAB+Ps 6A-DAB+Ps 7F-DAB) in order to show absence of any significant amount of complex formation among the single antigens.

FIG. 12 shows SEC-HPLC analysis of the multivalent antigen, following purification on Sepharose 4B-CL, with specific reference to the profile of the carrier protein CRM197 (SEQ ID NO:1).

FIG. 13 shows SEC-HPLC analysis of CRM197 (SEQ ID NO:1) as native protein, when mixed with Ps 3-DAB, Ps 6A-DAB and Ps 7F-DAB.

pages 385-391, 1986) involving the end-point activation at low temperature of the low MW Ps employed which, consequently, resulted in a low coupling yield while not involving the molecular cross-linking of the conjugate.

Another difference with the previous model lies in the stoichiometric features of that previous construct (w/w ratio Protein/Ps) as well as in the determination of the Ps 30 Ps7F-DAB as reference.

FIG. 14 shows the SDS-PAGE analysis (9% Glycine buffer) showing the pattern of the purified multivalent cantigen CRM197-3,6A,7F. Legend of the loaded samples: 1: CRM197 (SEQ ID NO:1) as reference; 2: Polydispersed MW of the purified multivalent conjugate antigen CRM197-3,6A,7F; 3: Mixture of CRM197+Ps3-DAB+Ps6A-DAB+Ps7F-DAB as reference.

FIG. 15 shows immunoblot analysis (Western-blot) of the multivalent antigen as qualitatively revealed by type-specific serum polyclonal antibody. Legend of the loaded samples: 1:

Multivalent conjugate CRM197-3,6A,7F (from line **2** of FIG. **14**, above); 2: Mixture of CRM197+Ps3-DAB+Ps 6A-DAB+Ps7F-DAB as reference.

FIG. **16** shows the comparison between the % inhibition (expressed as MIC₅J for CRM197 (SEQ ID NO:1) native and in its conjugated form as CRM197-Ps,3,6A,7F.

FIG. 17 shows the sigmoidal curve (log scale) referred to the graph of FIG. 16.

FIG. **18** shows the comparison between the % inhibition (expressed as MIC₅₀) of Ps 3-DAB and CRM-3,6A,7F vs. native Ps3 showing Type 1 Antigenicity or Antigenic Identity of Ps3 following either DAB activation or conjugation.

FIG. **19** shows the sigmoidal curve (log scale) referred to the graph of FIG. **18**.

FIG. **20** shows the comparison between the % inhibition (expressed as MIC₅J of Ps 6A-DAB and CRM-3,6A,7F vs. native Ps 6A showing Type 1 Antigenicity or Antigenic Identity of Ps6A following either DAB activation or conjugation

FIG. 21 shows the sigmoidal curve (log scale) referred to the graph of FIG. 20.

FIG. 22 shows the comparison between the % inhibition (expressed as MIC₅₀) MIC50 of Ps 7F-DAB and CRM-3, 6A,7F vs. native Ps 7F showing Type 1 Antigenicity or Antigenic Identity of Ps7F following either DAB activation or conjugation.

FIG. 23 shows the sigmoidal curve (log scale) referred to the graph of FIG. 22.

In the following experimental section the invention will be disclosed in more detail according to preferred embodiments, that should be considered not to be limitative for the scope of protection but merely for illustrative purpose.

EXAMPLES

Example 1: Synthesis of the Tetravalent Conjugate Antigen Comprising Polysaccharides 3, 6A, IF of S. pneumoniae and the Carrier Protein CRM197 (SEQ ID NO:1)

Chemical activation of Ps 3,6A,7F to the homologous Ps-DAB (diamine butyric acid derivative)

This step has been performed according to the process disclosed by the Applicant in the Claim 1 (step A1) of the above mentioned patent EP1501542, herewith included as a reference.

Specific controls of such activation as well as the obtained 15 characteristics of the activate Ps structures is here below reported using ¹H-NMR spectroscopy.

¹H-NMR analysis of Psi-DAB, Ps6A-DAB, Ps7F-DAB 1. Solution of Ps and Ps-DAB Derivatives for NMR Analy-

3-4 mg of polysaccharide sample (PS) or PS-DAB is solved in 0.7 ml of D₂O-phosphate buffer and transferred into a 5 mm NMR tube. The concentration of phosphate buffer prepared in D₂O is 100 mM, pH=7. Trimethylsilylpropionic acid sodium salt (TSPA),

(CH₃)₃Si(CD₂)₂COONa is used as an internal reference. The concentration of TSPA is 1 mM.

2. NMR Equipment

High field NMR spectrometer (600 MHz) is used. A high resolution 5 mm probehead with z-gradient coil capable of 30 producing gradients in the z-direction (parallel to the magnetic field) with a strength of at least 55 G·cm⁻¹ is employed.

3. Setup of NMR Experiments

After the introduction of the sample inside the magnet all 35 the routine procedures have been carried out: tuning and matching, shimming, 90 degree pulse calibration. Presaturation can be used to suppress the residual HDO signal. For good presaturation the centre of the spectrum (O1) must be set exactly on the HDO signal (about 4.80 ppm), and good 40 shimming is desirable as well.

After adjustment of parameters for presaturation, the parameters of diffusion gradient experiments are checked. The stimulated echo pulse sequence using bipolar gradients with a longitudinal eddy current delay is used.

4. Fingerprinting of DAB-Activation

Group — CH_2 — NH_2 at 3.08 ppm

Group —CH₂—NH—CH₂— at 3.17 ppm

5. % of DAB Activation on Ps

Is in the range value of 0.5-5.0% moles DAB/moles BRU (Basic Repeating Unit of the Group-specific Ps) with an optimal molar range 1.5-3.0%.

Derivatization of Psi-DAB, Ps6A-DAB, Ps7F-DAB to

This step has been performed according to the process disclosed by the applicant in Claim 8 of the European Patent EP 1501542, herewith included as a reference.

Simultaneous coupling of the three activated (poly-functional) Ps to the (poly-functional) carrier protein CRM197 60 (SEQ ID NO:1)

The chemical synthesis of the conjugate, also known as coupling reaction, has been performed according to the process disclosed by the applicant in claim 8 of the European Patent EP1501542 herewith included as a reference.

The procedure, however, can be here considered as innovative because the three coupling reactions are simultane18

ously run, rather than proceeding in one coupling reaction at the time (or step-by-step process).

This procedure may be preferred to the step-by-step coupling of each Ps-activated antigen for the simple reason of shorting the reaction time, therefore improving the efficiency of the reaction, provided that the three activated-Ps are in the condition to comparatively compete at the equilibrium for the coupling reaction (this feature include comparable average MW, comparable range of Ps-DAB activation and comparable stoichiometric ratios among the reacting groups of the protein and those of the activated Ps). The appropriate stoichiometry of reaction keeps in consideration the total amount of succinimidyl esters relative to the three Ps antigens activated and the amino groups of the carrier protein available.

Stoichiometry is preferentially set as to consider the reactivity of no more than 20% (or 8 out of 40) of the amino groups available in the structure of CRM197 (SEQ ID NO:1) (as an example) in order for the protein to optimally conserve its antigenic repertoire.

Based on experimental data, the coupling reaction is consistent with the following stoichiometry:

IDPs-DAB-deriva-CRM197 (SEQ NO:1)+4 tives→CRM197-(Ps)₃+Ps-DAB-derivatives

Where the entity Ps-DAB-derivatives refer to the total of equal parts of each of the three type-specific carbohydrate structures in reaction yielding a conjugate averaging 1 mole of protein for the total of 3 moles of type-specific Ps carried, plus the due excess of Ps-DAB-derivatives, as ruled by the equilibrium constant:

$$K_{eq} = \frac{[\text{CRM197-}(\text{DAB-Ps})_3][\text{Ps-DAB-derivatives}]}{[\text{CRM197}][\text{Ps-DAB-derivatives}]^4} =$$

[CRM197-(DAB-Ps)₃] [CRM197] [Ps-DAB-derivatives]

The chemical equation makes evidence for the complete glycosylation of the CRM197 (SEQ ID NO:1) carrier protein. The equation also shows that the conjugation reaction depends from the concentrations of both reagents, the nucleophile (CRM197 (SEQ ID NO:1) through the epsilon-NH₂ groups of its Lys residues) and the electrophile (the carbonyl moiety of the ester groups of Ps-DAB-derivative) therefore being defined as $S_N 2$ reaction.

The above considerations are consistent with the experimental observation that the highest yield in the glycosylation 50 reaction obtained with CRM197 (SEQ ID NO:1) as carrier protein has been 100% of the carrier protein and about 80% (w/w) of the Ps-DAB-derivatives present in reaction, with the remaining part of them being a low amount of uncoupled Ps-derivatives necessary for pushing to the right side the their homologous active esters as Ps-DAB-MSE derivatives 55 equilibrium.

In this type of reactions, the solvent affects the rate of reaction because solvents may or may not surround the nucleophile, thus hindering or not hindering its approach to the carbon atom. Polar aprotic solvents, are generally better solvents for this reaction than polar protic solvents because polar protic solvents will be solvated by the solvent's hydrogen bonding for the nucleophile and thus hindering it from attacking the carbon with the leaving group. A polar aprotic solvent with low dielectric constant or a hindered dipole end, will favor S_N2 manner of nucleophylic substitution reaction (preferred examples are: DMSO, DMF, tetrahydrofuran etc.). However, in the present case using

CRM197 (SEQ ID NO:1) as carrier protein, polar protic solvents and polar aprotic solvents work very well when experimentally compared vis-à-vis.

The temperature of the reaction, which affects K_{eq} , is the lowest compatible with the use of the solvent chosen, when 5 considering that the reaction is a spontaneous one (therefore being exothermic) and therefore is generally set between a temperature of 4° and 20° C.

In addition to the conjugation chemistry above detailed, other chemistries can be used to achieve the synthesis of the multivalent conjugate antigen; among these, the direct coupling of the protein (via reductive amination) to the oxidized Ps (via O-de-hydrogen uncoupling) or the use of heterologous and chemically complementary linkers that may serve to activate the Ps and the protein.

Also, in addition to the strategy of using chemistries leading to obtain multivalent cross-linked protein-Ps conjugates via the poly-functionality of the protein and that of the Ps components, one may consider the synthesis of the presently disclosed antigenic multivalent molecular construct as based on oligosaccharides activated at their endreducing group for then being coupled to the carrier protein, as the applicant did show earlier in another model of conjugate antigen in the above mentioned paper Porro M. et 25 al. in Molecular Immunology, 23: 385-391, 1986, herewith enclosed as a reference.

Finally, the disclosed molecular construct might be thought to be prepared by enzymatic glycosylation in bacterial or yeast cells or other engineered living cells, using ³⁰ "ad hoc" DNA-recombinant techniques.

Example 2: Physical-Chemical Analysis of the Antigenic Multivalent Molecular Construct CRM197-3, 6A, IF

The GPC (Gel Permeation Chromatography) analysis has been employed to perform the physical analysis of the antigenic multivalent molecular construct of Example 1. FIG. 10 shows GPC analysis of the multivalent antigen as it 40 is obtained from the conjugation reaction, before purification. The chromatogram comes from Sepharose 4B-CL equilibrated in 0.14 M NaCl buffered at pH=7.50. Purification of the multivalent antigen is simply obtained by collecting and pooling the eluted fractions from Kd=0.00 to 45 Kd=0.30.

The technique of SEC-MALLS helps to define the dispersity (\mathcal{D}) of the molecular system obtained, calculated using the equation $\mathcal{D}=M_m/M_n$, where M_m is the massaverage molar mass and M_n is the number-average molar 50 mass and also allows to determine some intrinsic properties of the above molecular system since the intensity of the light scattering angles carries information about the molar mass, while the angular dependence carries information about the size of the macromolecule. In fact, if a given macromolecule 55 of mass M is made up of elements m_i , then the basic light scattering equation shows that:

$$\label{eq:rg} \langle r_g^2 \rangle = \sum_i r_i^2 m_i \, \bigg/ \, \sum_i m_i = \frac{1}{M} \sum_i r_i^2 m_i$$

where r_i is the distance of element m_i from the center of mass of the molecule of total mass M. According to this equation, 65 the relationship between mass, size, and the quantities measured is defined.

20

The following Table 1 shows the characterization of the dispersed molecular mass of the above purified multivalent antigen (fractions in the range Kd=0.00-0.30) analyzed by SEC-MALLS.

TABLE 1

	Upper Mass (g/mol)	Average Mass (g/mol)	Lower Mass (g/mol)	
0	5.92 × 10 ⁴ (66.4%)	9.67×10^4 (26.6%)	2.69×10^4 (7.0%)	

The experimental data collected by SEC-MALLS show that the dispersed mass of the antigenic multivalent molecular construct encompasses the basic unit [CRM197-3,6A, 7F]_{n=1} for about 7% of the mass dispersion, and polymers of it with composition [CRM197-3,6A,7F]_n=3.6, for about 27% of the mass dispersion, and up-to [CRM197-3,6A, 7F]_n=₂₂ for the rest of the mass dispersion which represents the main form (66%) of the molecular construct in terms of product of reaction. Polymers of the basic unit of the molecular construct are obtained as cross-linked molecular entities because of the polyfunctionality of the Ps antigens (about 2% of DAB activation, on molar basis, as shown by ¹H-NMR spectroscopy) and the polyfunctionality of the carrier protein (40 reactive amino groups/mole, available as 39 Lysine residues+1 amino terminal aa within the structure encompassing the whole 535 aa of the sequence).

FIG. 11 shows the GPC analysis, as an example, on the same gel Sepharose 4B-CL of the four components just mixed together (CRM197 (SEQ ID NO:1)+Ps 3-DAB+Ps 6A-DAB+Ps 7F-DAB) in order to show absence of any significant amount of complex formation among the single antigens. Chemical methods for titration of the three Ps structures involved the analysis of uronic acid (type 3), phosphorous (type 6A) and hexosamines (type 7F) according to the requirements of the WHO guidelines. The following Table 2 shows the characterization of the dispersed molecular masses of the three mixed type-specific Ps-DAB derivatives as analyzed by SEC-MALLS, for reference.

TABLE 2

Upper Mass	Average Mass	Lower Mass
(g/mol)	(g/mol)	(g/mol)
2.75×10^5 (17.0%)	7.27 × 10 ⁴ (70.5%)	1.81×10^4 (12.5%)

Considering the different BRU of the three Ps structures, the mean number \pm SD of BRU/Ps is 212 \pm 62

FIG. 12 shows SEC-HPLC analysis of the multivalent antigen, following purification on Sepharose 4B-CL, with specific reference to the profile of the carrier protein CRM197 (SEQ ID NO:1).

The following experimental conditions were used in the SEC-HPLC analysis:

Column: Phenomenex, Biosep-SEC-S3000, 300×7.80 mm (Vo 6.92 min.; Vt 12.5 min.)

MW Sizing range: 700 K-5 K

Eluent: NaCl 0.14M+NaH PO₄ 0.05 M pH 6.80

Flow: 1 ml/min

60

Detector: 280 nm (detection of the protein CRM197 (SEQ ID NO:1) FIG. 13 shows SEC-HPLC analysis of CRM197 (SEQ ID NO:1) as native protein, when mixed with Ps 3-DAB, Ps 6A-DAB and Ps 7F-DAB. Experimental conditions are the same as above reported for the analysis carried out in FIG. 12.

In light of the above the conjugate under analysis is a polydispersed, monomeric to polymeric, molecular entity which contains the basic unit of the molecular construct reported in the chemical equation [CRM197-(Ps) 3], with a calculated average MW of ca. 2.7×10⁵ when considering the saverage MW (estimated by SEC-MALLS)

21

of the poly-functional DAB-activated Ps structures (ca. 0.7×10^5) and that of CRM197 (SEQ ID NO:1) (5.85×10⁴) accounting for 535 aa); accordingly, the several cross-linked units of such basic structure is reaching a MW of ca. 6 millions as evaluated by SEC-MALLS. The w/w ratio between the carrier protein and each of the three type-specific Ps is ca. 1.0; this w/w ratio yields an average molar ratio (R) protein/type-specific Ps of 1.0, corresponding to an average ratio of one mole of protein/mole of type-specific Ps, as well suggested by the chemical equation.

Accordingly, the experimentally obtained, cross-linked, molecular entity responds to a molecular model constituted by several polymeric units of the basic unit just consisting of one mole of carrier protein carrying a total of three moles of ²⁰ type-specific Ps (one mole for each type-specific Ps).

Example 3: Immunochemical Analysis of the Antigenic Multivalent Molecular Construct CRM197-3,6A,7F

The immunochemical analysis of the antigenic multivalent molecular construct CRM197-3,6A,7F was carried out by SDS-PAGE using the analytical conditions according to Laemmli U. K., Nature 227, 680-685 (1970), herewith ³⁰ enclosed as reference.

FIG. **14** shows the SDS-PAGE analysis (9% Glycine buffer) showing the pattern of the purified multivalent antigen.

FIG. 15 shows immunoblot analysis (Western-blot) of the 35 multivalent antigen as qualitatively revealed by type-specific serum polyclonal antibody. The analytical conditions employed were according to Towbin H. et al., PNAS 76: 4350-4354 (1979). Silver staining according to Porro M. et al., Anal. Biochem. 118: 301-306 (1981). The serum polyclonal, Ps type-specific, antibodies are described in the below section dedicated to the inhibition-ELISA method.

Qualitative and quantitative determination of each antigenic Ps component on the basis of inhibition-ELISA using polyclonal (or monoclonal) antibodies

As well known since the birth of Immunochemistry, branch of the wider field of Immunology in the Thirties' of the past Century, capsular Ps antigens are composed of Basic Repeating Units (BRU) which may be constituted by homologous monosaccharides (e.g.: meningococcal Ps) as 50 well as by more complex hetero-polysaccharide sequences involving bi/tri/tetra/penta/esa/epta-saccharide residues (e.g.: pneumococcal Ps). An average sequence of 5 (preferably 8) to 12 monosaccharide residues form the basic structural epitope of (Ps) carbohydrate antigens, which confer the due immunological specificity to each (Ps) structure. This size, typical of a single epitope within the human ABO system or of a sequence of epitope-repeating structures within complex bacterial capsular Ps, is coherent with the size of the binding site of an antibody (Kabat E. A., "The nature of an antigenic determinant" J. Immunol. 97: 1-11, 1966) and, on these basis, it was possible to describe the reactivity of a Ps structure toward a specific polyclonal population of antibodies, by inhibiting the binding reaction of the system Ps-Ab using different MW of the Ps polydispersed system, in order to document the relation existing 65 between antigenicity of a Ps structure containing repeating BRU (thus forming repeated epitopes of identical antigenic-

ity) and the specificity for it of the homologous polyclonal antiserum (Porro M. et al, Mol. Immunol. 22: 907-919, 1985); by comparison of the MIC50 of the various MW of the polydispersion of a given Ps, it was then possible to define the relative specificity of a polyclonal (or monoclonal) population of antibodies for such MW and finally calculating the relative concentration of the different Ps structures for a quantitative determination of it.

22

By having a reliable immunochemical method for mapping and titering the Ps structures present in such a molecular construct, there are practical advantages of determining the qualitative and quantitative characteristics of such model of conjugates, over the chemical methods, especially in cases of Ps with very close structural features for their sequences, like in the case of type 6A and 6B or type 19A and 19F or in any other case where structural similarities among Ps antigens are present as in the case of type-specific Ps belonging to a given reference group (e.g.: Group 6 includes the type-specific Ps 6A,6B,6C,6D; Group 19 includes the type-specific Ps 19A,19B,19C,19F; Group 23 includes the type-specific Ps 23A,23B,23F). In fact, the exquisite specificity of an antibody can easily discriminate between such structural similarities without ambiguity and in short time, unlike chemical methods.

The recent development of monoclonal antibodies to the 25 Ps antigens of *S. pneumoniae* (Pride M. W. et al., Clin. And Vaccine Immunol. 19(8): 1131-1141, 2012) would further increase the potential of this powerful method of analysis.

The comparison between chemical titration and immunochemical titration of carbohydrate antigens for testing their quantitative equivalence, is performed by the use of inhibition-ELISA, through the experimentally determined parameter MIC_{50} (Minimal Inhibitory

Concentration of the selected carbohydrate antigen working as inhibitor of the homologous reference Ps-Ab reaction) in order to evaluate accuracy and precision of the immunochemical method with respect to the chemical one in the analytical control of such a kind of molecular construct. Inhibition-ELISA Protocol

The following ELISA protocol was applied in order to determining the value of MIC_{50} of each of the three Ps-DAB derivatives and the protein CRM197 (SEQ ID NO:1) or the multivalent conjugate CRM197-3,6A,7F as inhibitors of the homologous reference reaction type-specific Polysaccharide-Antibody (Ps-Ab) or Protein-Antibody (Prot-Ab).

Reference type-specific Ps-derivative (Ps-DAB) and the multivalent conjugate CRM197-3,6A,7F were prepared according to the mentioned process reported by Porro M. in claim 8 of the Patent EP1501542.

Chemical methods for titration of the three Ps structures involves analysis of Uronic acid (type 3), Phosphorous (type 6A) and Hexosamines (type 7F) according to the requirements of the WHO guidelines. The inhibition reaction is based on the principle for a given carbohydrate structure, of a given molecular mass, of inhibiting the homologous reference reaction system according to the immunochemical equation:

So that the difference in reactivity between the reference reaction and the inhibited-one is representative for the

different or identical specificity of the antibody population for the inhibitor. By using carbohydrate structures of different molecular mass, one can describe the sigmoidal curve typical of that specific reaction and calculate the MIC₅₀ of the inhibitor for then comparing it with the one of the 5 carbohydrate structure of reference and establishing the parameter of Antigenicity of the inhibitor (on qualitative basis) and Specificity of the antibody (on quantitative basis). All these concepts and the relative practical use are reported in the following publications, herewith incorporated as 10 references:

Berzofsky J. A. and Schechter A. N. Mol. Immunol., 18: 751-763 (1981);

Porro M. et al. Mol. Immunol., 22: 907-919 (1985).

24

- 3. Pneumococcal reference polyclonal antisera from Statens Serum Institute, Copenhagen, DK (www.ssi.dk) in PBS-Tween 0.05% (v/v) 2 h 37° C. Final dilutions (as examples): a. Rabbit antiserum to group 3 1:100,000 v/v (Positive~1 0.0 $OD490_{nm}$
- b. Rabbit antiserum to group 6A1:25,000 v/v (Positive~1.0 $OD490_{nm}$
- c. Rabbit antiserum to group 7F 1:800,000 v/v (Positive~l 0.0 OD490_{nm}
- 4. Unknown samples: the unknown samples are interpolated versus the reference sigmoidal regression curve obtained by the reference reaction.
- 5. Murineserum anti-CRM197, final dilution, 1:100,000 v/v (Positive -1.0 OD490_{nm}).

TABLE 3

Inhibitor					Inhibitor st	ock solution					Anti-Ps stock
final/wall	1 ng/ml	10 ng/ml	100 ng/ml	1 μg/ml	10 μg/ml	100 μg/ml	200 μg/ml	400 μg/ml	1 mg/ml	2 mg/ml	solution
0.5 ng/ml	50 µl										50 µl
5 ng/ml		50 μl									50 µl
50 ng/ml			50 ш								50 µl
0.5 μg/ml				50 µl							50 µl
5 μg/ml					50 µl						50 μl
50 μg/ml						50 μl					50 µl
100 μg/ml							50 µl				50 μl
200 μg/ml								50 μl			50 μl
500 μg/ml									50 μl		50 μl
1 mg/ml										50 μl	50 µl

Method of Analysis (Illustrative)

Stock Solutions:

Ps-DAB or CRM197 (SEQ ID NO:1) at 1 mg/ml in PBS pH 7.2-7.4 PBS 1×(1 L) 8.0 g NaCl 0.31 g KH₂PO₄ 2.06 g Na₂HPO₄.7H₂O 0.16 g KCl Do not adjust pH TBS-Brij 0,1% (v/v) TBS 10× (11) 80 g NaCl 1.6 g KCl 0.94 g Tris 14.56 g Tris-HCl 33 ml Brij-35 (30% v/v) Stable at r.t. for 12 months Dilute 50 ml buffer to MilliQuf water PBS-Tween20 0.05% (v/v) Goat Anti-Mouse IgG or IgM peroxidase labeled Phosphate-Citrate Buffer 0.05M pH 5.0 H₂O₂ 30% (v/v) O-Phenilenediamine 1 mg/ml in Phosphate-Citrate Buffer 0.05M pH 5.0 H2SO4 3M

Procedure:

1. Coating Plates (GREINER 65001 polystyrene plate SIGMA cod. M4436)

Ps at 20 μg/ml PBS pH 7.4 37° C. 2 h+o.n. 4° C. CRM197 (SEQ ID NO:1) at 10 μ g/ml PBS pH 7.4 o.n. 4° C.

Coat 100 µl/well

2. Washing $5 \times$ with TBS-Brij 0.1% (v/v) (1st wash 20 sec.)

- 6. Incubation×Inhibition time: 15 min
- 7. Washing $5 \times$ with TBS-Brij 0.1% (v/v) (1st wash 20 sec.)
- 8. Goat Anti-Rabbit or anti Mouse IgG peroxidase labelled 35 in PBS-Tween 0.05% (v/v) 2 h 37° C.
 - 9. Washing 5× with TBS-Brij 0.1% (v/v) (1st wash 20 sec.) 10. O-Phenilenediamine 1 mg/ml in Phosphate-Citrate Buffer 0.05M pH 5.0, H₂O₂ 0.03% (v/v)
 - 11. After 5' Stop the reaction with H₂SO₄ 3 M 50 μl/well
 - 12. Read at OD 490 nm
 - 13. Interpolate unknown values vs the reference sigmoidal line regression obtained by the reference reaction: Calculation of % Inhibition:

45
$$\frac{\text{Inhibited }OD \text{ Value} - \text{Blank }OD \text{ value}}{\text{Positive }OD \text{ Value} - \text{Blank }OD \text{ value}} \times 100 = (\%)$$

$$\text{Thus, }\% \text{ Inhibited} = 100 - (\%)$$

Thus, % Inhibited=100-(%)

Calculation of MIC₅₀:

This inhibitory concentration is determined at 50% of either the regression function or the related sigmoidal curve. 55 Method's SD is within 20% of the mean value. Results

The results of the MIC50 for CRM197 (SEQ ID NO:1) native and in its conjugated form as CRM197-Ps,3,6A,7F show that the conjugation reaction did not affect the antigenic features of CRM197 (SEQ ID NO:1) (Type 1 Antigenic Identity), as may be inferred from the analysis of the graphs set forth in FIG. 16-17. FIG. 17 illustrates the non-linear regression function of the sigmoidal curve.

The results of the MIC50 for each of the three conjugated 65 Ps-DAB derivatives are illustrated in the graphs set forth in FIGS. 18-23. FIGS. 19, 21 and 23 illustrate the non-linear regression function of the sigmoidal curve.

35

Immunochemical titers are obtained according to the method reported above in Example 3 dedicated to the Inhibition-ELISA method; chemical titers are obtained according to the methods above reported in Example 2; 10 immunochemical titers of unknown samples of each of the three carbohydrate-specific antigens, either in activated or conjugated form, were determined by interpolation on the linear part of a reference standard curve built by inhibition-ELISA using known, chemically titred, carbohydrate antigen amount. The reported values are the mean of several independent assays. Results on determination of quantitative equivalence of the two methods are summarized in the following Table 4.

TABLE 4

Chemical determination (µg/ml)	deteri	nochemical nination* ug/ml)
Ps1 1.0	0.9	(-10.0%)
2.0		(+13.1%)
4.0		(-7.5%)
*Lowest amount Ps1 detected: 0.02 ug		(
Ps3 0.80	0.91	(+13.4%)
1.60		(+10.6%)
3.20		(+3.4%)
6.40	6.71	(+4.8%)
*Lowest amount Ps3 detected: 0.01 ug		
Ps4 2.0	2.25	(+11.2%)
4.0		(-5.0%)
8.0	7.40	(-7.5%)
*Lowest amount Ps4 detected: 0.01 ug		
Ps5 3.1		(+6.1%)
6.25		(-8.8%)
12.5	10.8	(-13.6%)
*Lowest amount Ps5 detected: 0.015 ug	0.60	(400()
Ps6A 0.63		(-4.8%)
1.72		(+11.6%)
3.43		(+5.8%)
6.87	7.31	(+6.4%)
*Lowest amount Ps6A detected: 0.01 ug Ps6B 2.0	2.4	(+16.7%)
4.0		(+7.0%)
8.0		(+13.0%)
*Lowest amount Ps6B detected: 0.10 ug	7.2	(+13.070)
Ps7F 1.34	1 43	(+6.7%)
2.68		(+11.9%)
5.37		(+1.9%)
10.75		(+3.0%)
*Lowest amount Ps7F detected: 0.01 ug		()
Ps9V 3.8	4.2	(+9.6%)
7.5	6.4	(-15.0%)
15.0	12.2	(-18.7%)
*Lowest amount Ps9V detected: 0.10 ug		
Ps14 3.4	3.8	(+10.6%)
6.8	6.5	(-5.0%)
13.5	16.2	(+16.5%)
*Lowest amount Ps14 detected: 0.10 ug		
Ps18C 2.5		(+10.8%)
5.0		(-6.0%)
10.0	8.9	(-11.0%)
*Lowest amount Ps18C detected: 0.02 ug	4.1	(.0.70/)
Ps19A 3.8 7.5		(+8.7%)
7.3 15.0		(-13.4%)
*Lowest amount Ps19A detected: 0.02 ug	13.3	(-11.4%)
Ps19F 3.8	2 5	(-7.9%)
7.5		(+9.4%)
15.0		(+9.4%) (+11.8%)
*Lowest amount Ps19F detected: 0.02 ug	17.0	(111.070)
Lowest amount 15171 detected, 0.02 ug		

26TABLE 4-continued

(Chemical determination (µg/ml)	Immunochemical determination* (μg/ml)
Ps23F	3.8	4.3 (+11.7%)
	7.5	6.6 (-12.0%)
	15.0	13.3 (-11.4%)
*Lowe	est amount Ps23F detected: 0.	02 ug
CRM ₁	97 1.3	1.2 (-7.7%)
•	2.5	2.7 (+11.7%)
	5.0	5.3 (+5.7%)
	10.0	9.6 (-4.0%)
*Lowe	est amount CRM ₁₉₇ detected:	0.10 ug

*Lowest amount immunochemically detectable for the type-specific Ps in the assay conditions.

Note:

Physical-chemical determination of the protein CRM197 (SEQ ID NO: 1) was performed by Folin reagent and/or amino acid analysis using hydrophobic reverse-phase HPLC to separate fluorescein-labeled amino acids following acid hydrolysis (Pico-Tag method by Millipore). SD for the physical-chemical determinations is within 10% of the mean values, SD for the immunochemical determinations is within 20% of the mean values, that is within in the estimated SD of the day-by-day variation of the ELISA method and in agreement with the guidelines of the European Pharmacopoeia 5th Edition (2008) for the Pneumococcal Polysaccharide Conjugate Vaccine.

The same methodology described for the qualitative and quantitative immunochemical analysis of each molecular construct above reported, is then used for characterization of the final formulation of the polyvalent vaccine containing the association of several (4 or 5 or 6 or more) molecular constructs in order to get the complete characterization of an exemplificative 12-valent or 15-valent or 18-valent vaccine.

Example 5: Immunological Analysis in a Murine Model of the Antigenic Multivalent Molecular Construct, as an Example

 $\label{eq:mean_ratio} \begin{tabular}{ll} Mean Ratio Protein/Each of the Type-Specific Ps: \\ 1.1 \pm 0.1 \; (w/w). & Vaccine Formulation \\ \end{tabular}$

Dose of the Molecular Construct CRM197-3,6A,7F

The injected dose is 0.01 μg and 0.1 μg of each type-specific conjugated Ps, with and without A1P0₄ as adjuvant at the fixed dose of 0.5 mg/dose (equivalent to ca. 0.120 mg of Alum). Adsorption of the multivalent molecular construct to the mineral adjuvant occurred at ≥80%, on weight basis, as estimated by ELISA. According to the stoichiometry of the multivalent conjugate, the total dose of CRM197 (SEQ ID NO:1) is ca. 0.01 μg in the case of the lowest dose of each type-specific conjugated Ps and ca. 0.1 μg in the case of the highest dose of each type-specific conjugated Ps.

It is remarked that the dose injected of 0.01 µg Typespecific Ps is the lowest-one, immunogenic in mice, which is acknowledged by US-FDA and EMEA for the currently 50 licensed pneumococcal conjugate vaccines, which use Aluminum Phosphate as adjuvant. Animals

Each group of animals containing 10 female Balb/c mice (alternatively CD1) and 6 female New Zealand white rab-

55 bits.

Route

i.p. (mice) and s.c. (rabbits)

Immunization Schedule

0, 2, 4 weeks; bleeding at week 0, 2, 4, 6 (mice).

60 0.4 weeks; bleeding at week 0, 4, 6 (rabbits).

Control immunization with plain Ps antigens were omitted on the basis of the historical knowledge that highly purified Ps antigens are not significantly immunogenic in mammalians and do not "boost" IgG isotype antibodies following repeated injections of it. ELISA titers

Titers expressed as end-point reaction showing O.D.≥2.0 relative to the control reactions for each type-specific Ps and

CRM197 (SEQ ID NO:1) or DT (Diphtheria Toxoid), the antigen immunogenically identical and in statistical correlation with CRM197 (SEQ ID NO:1)(Porro M. et al. J. Infect. Dis., 142 (5), 716-724, 1980). Sera pool dilutions are performed serially, in twofold fashion, starting from dilution 5 1/200.

MOPA (Functionality Assay)

For testing Opsonic activity of the murine and rabbit polyclonal antibodies raised following immunization with the multivalent molecular construct, the MOPA-4 test 10 (4-fold Multiplexed Opsono Phagocytic killing assay) was run, as recommended by WHO guidelines, using HL60 cells. Titers expressed as geometric mean of the end-point dilution showing ≥50% killing activity for each sera pool at each dose, as referred to a standard curve built in parallel for 15 calculating the titer values of the various samples by linear interpolation.

Immunological Results

Dose of 0.01 µg Ps/type-specific conjugated Ps. Geometric Mean Titers of IgG or IgM to type-specific Ps or to 20 CRM197 (SEQ ID NO:1) in murine sera pool as determined by ELISA. SD is within ±25% of the reported Geometric Mean. MOPA titers are reported in parenthesis as calculated by linear interpolation in the assay procedure. Unless otherwise indicated, the statistical significance among sera 25 titers (determined by t-test) was <0.01. Results are summarized in the following Table 5.

The above Tables 5 and 6 show the anamnestic induction of biologically functional IgG isotype antibodies for each of the four components of the multivalent molecular construct.

Particularly, any boosting activity on the immune system observed for the carrier protein is in parallel observed for each of the carried Ps antigens, typical and well known behavior of helper T-dependent antigens. The effect of the mineral adjuvant is particularly evident at such low doses of the multivalent antigen, another feature of helper T-dependent antigens like proteins which do generate a stronger immune response taking further advantage from the antigen slow-release over time in the host's body.

Furthermore, the effect of glycosylation on the carrier protein CRM197 (SEQ ID NO:1), as generally known for glycoproteins, can be beneficial for the improved resistance of this protein to proteolytic enzymes, since CRM197 (SEQ ID NO:1) is a fragile protein when exposed to the serine proteases widely present in mammalians (Porro M. et al., J. Infect. Dis., 142 (5), 716-724, 1980).

The booster effect obtained against CRM197 (SEQ ID NO:1) also strongly supports the fact that the multivalent molecular construct has the potential to work as antigen in humans for the prevention of toxicity due to diphtheria toxin, a well documented property of CRM197 (SEQ ID NO:1) in animal models (see the above bibliographic reference), in which case the multivalent antigen might be also used for the immunization of infants and young children in

TABLE 5

		Withou	t Adjuvan	<u>t</u>	-	Wi	th Adjuvant	
Ag	$\mathbf{W}0$	W2	W4	W6	$\mathbf{W}0$	W2	W4	W6
3	<200	<200	200	800	<200 <200	200 <200	800 <200 (12)	3,200 <200 (124)
6A	<200	<200	200	800	<200 <200	200 <200	400 <200 (6)	3,200 <200 (135)
7F	<200	<200	200	800	<200 <200	200 <200	1,600 200	6,400 400
CRM197	<200	<200	800	3,200	<200 <200	1,600 200	(26) 12,800 800	(248) 25,600 800

Mean Titers of IgG or IgM to type-specific Ps or to DT in murine sera pool as determined by ELISA. SD is within ±25% of the reported Geometric Mean. MOPA titers are reported in parenthesis as calculated by linear interpolation in the assay procedure. Results are summarized in the following Table 6.

Dose of 0.10 µg/type-specific conjugated Ps. Geometric 45 replacement of the diphtheria toxoid vaccine (present in the DTP vaccine) so that the antigenic burden of the paediatric vaccines in use could be further reduced. Finally, according to the immunological features of helper T-dependent antigens, IgM isotype antibody were neither significantly induced nor boosted by the carrier protein or the carried Ps of the multivalent molecular construct.

TABLE 6

Type		Witho	ut Adjuva	nt		Witl	ı Adjuvant	
Ps	$\mathbf{W}0$	W2	W4	W6	$\mathbf{W}0$	W2	W4	W6
3	<200	200	800	6,400	<200 <200	800 200 (16)	6,400 400 (254)	25,600 800 (1,824)
6A	<200	200	800	3,200	<200 <200	800 200 (22)	3,200 200 (120)	12,500 800 (1,150)
7F	<200	200	1,600	3,200	<200 <200	1,600 200 (48)	6,400 400 (168)	25,600 800 (1,580)
CRM197	<200	800	3,200	12,800	<200 <200	6,400 200	25,600 800	102,400 1,600

Rabbit sera were specifically used to assess the fourfold increase of IgG isotype antibody ELISA titers to type-specific Ps, with the parallel increase of OPA titers, following the first booster dose of the molecular construct. The following results were collected, expressed as fold-increase of the sera GMT obtained with respect to the titers detected following the immunological priming dose and reported in the following Table 7.

TABLE 7

Type Ps	IgG Ab to PS (fold increase)	OPA to Ps (fold increase)
3	12	40
6A	18	48
7F	28	52

Example 6: Vaccine Formulation of a Quadrivalent Meningococcal Conjugate Vaccine (QMCV) and of an Up-to 25-Valent Pneumococcal Polyvalent Conjugate Vaccine (PPCV)

The composition/formulation of QMCV may be limited to one single molecular construct where one mole (or fractions of it) of carrier protein carries at least one mole (or fractions of it) of each of the four different carbohydrate structures. The related pondered amount of the multivalent antigen depends upon the selected MW of the activated carbohydrate structures which may vary from LMW haptens constituted by a few (8-12) monosaccharide residues or BRU (Basic Repeating Units) encompassing the respective basic epitopes [Porro M. et al. Molecular Immunology, 22: 907-919 (1985); Porro M. et al. Molecular Immunology, 23: 385-391 (1986)] and up-to HMW carbohydrate structures composed of 200 BRU or more for containing the repeated structure of the basic epitope.

In such a case the amount of carrier protein per human dose, can be reduced to at least 25% of the amount present in a formulation which uses the association of single, 40 group-specific, conjugates.

The composition of PPCV depends from its polyvalent formulation. For instance, for a 15-valent vaccine containing selected 15 serotypes or for a 18-valent vaccine containing selected 18 serotypes, as above considered, only five to six 45 entities of the multivalent antigenic molecular construct will be necessary, since in each of them, one mole (or fractions of it) of carrier protein will carry an average of one mole (or fractions of it) of each of three different type-specific carbohydrate structures. The related pondered amount of the 50 multivalent antigen depends upon the selected MW of the activated carbohydrate structures which may vary from LMW haptens constituted by a few BRU (Basic Repeating Units) encompassing the respective epitopes (Arndt B. and Porro M. in: Immunobiology of Proteins and Peptides, 55 Edited by M. Z. Atassi, Plenum Press, New York and London, pg. 129-148, 1991) and up-to HMW carbohydrate structures composed of 200 BRU or more for containing the repeating structure of the basic epitope. In any case the amount of carrier protein per human dose, can be reduced to 60 at least 30% of the amount present in a formulation which uses the association of single, type-specific, conjugates.

New emerging serotypes of *S. pneumoniae* according to the public available data on epidemiology and antibiotic resistance, are type 6C, 6D (Satzke C. et al., J. Clin. 65 Microbiol., 48(11): 4298, 2010; Yao K H et al., Diag. Microbiol. Infect. Dis., 70(3):291-8, 2011); serogroups 11

30

(type 11A, 11B, 11C, 11F) (Richter S. et al., Clin. Infect. Dis., 48:23-33, 2009); Calix J. J. et al. J. Bacteriol. 193: 5271-5278, 2011); serogroup 15 (type 15B and type 15C); type 23A, serogroups 33 (33F) and 35 (type 35B) (Swanson D., IDSA meeting, Boston, 2011); such antigen Ps might be likely included in a further up-dated broad-spectrum vaccine formulation prepared according to the molecular construct disclosed in the present Application.

While the presently licensed 13-valent vaccine covers about 61% of IPD in children younger than 5 years, an up-dated formulation containing the Ps from the newly emerging types of *S. pneumoniae*, might well elevate the bar on coverage to 75-80%; in fact, it has been estimated that a formulation containing the 23-valent types of Ps today present in the polysaccharide-based vaccine, accounts for 88% of the bacteremic pneumococcal diseases which then cross-react with types of Ps causing an additional 8% of disease due to

20 S. pneumoniae (source US-Center for Disease Control: www.cdc.gov.). Such kind of up-dated, very broad, formulations can be safely prepared by the use of molecular constructs of the present invention, which allows a reduced use of protein carrier for carrying such an increased number of Ps antigens. For instance, when considering the dose of 2 μg of CRM197 (SEQ ID NO:1) (similar to Prevnar composition)/molecular construct, six molecular constructs carrying 18 Ps antigens would contain a total amount of 12 µg of protein, that is ca. 40% of that present in the 13-valent Prevnar vaccine, composed of single-conjugates of each type-specific Ps antigen. As specifically referred to an exemplified formulation of PPCV containing a 15-valent formulation which includes nowadays the most prevalent, epidemiologically significant, type-specific capsular polysaccharides of S. pneumoniae, the following molecular constructs have been synthesized and analyzed as an extended exemplification of the preferred embodiments, according to the methods reported above in Example 1, 2 and 3 for the molecular construct CRM197-3,6A,7F. The total amount of carrier protein exemplified in this exemplified 15-valent vaccine prepared and formulated according to the procedures reported in this application and defined by the stoichiometry of the resulting five molecular constructs, each one expressing built-in multiple epitopes, is coherent with the following molar composition relatively to the dose of each molecular construct containing ca. 1 µg of CRM197 (SEQ ID NO:1) carrier protein (MW=58.5 K) and ca. 1 µg of each of the three selected DAB-activated, type-specific, polysaccharide antigens (average MW=70.0 K based on two different criteria of analysis, that is estimating sizing by molecular filtration on calibrated filter membranes and estimating sizing by SEC-MALLS, in all cases using reference carbohydrate molecules like Dextrans of various MW).

TABLE 4

		IABLE 4	
	Molecular construct	Average (w/w) ratio CRM197/Ps	Average molar ratio CRM197/Ps*
	CRM197-3, 6A, 7F	CRM197/Ps3 = 1.20	1.44
,		CRM197/Ps6A = 0.98	1.17
		CRM197/Ps7F = 1.09	1.30
	CRM197-5, 9V, 19F	CRM197/Ps5 = 1.03	1.23
		CRM197/Ps9V = 0.93	1.11
		CRM197/Ps19F = 1.05	1.26
	CRM197-1, 14, 19A	CRM197/Ps1 = 1.19	1.42
5		CRM197/Ps14 = 0.97	1.16
		CRM197/Ps19A = 0.92	1.10

32 TABLE 9

Molecular construct	Average (w/w) ratio CRM197/Ps	Average molar ratio CRM197/Ps*		Molecul
CRM197- 22F, 23F, 33F	CRM197/Ps22F= 1.00	1.20	5	CRM19
	CRM197/Ps23F = 1.14	1.37		
	CRM197/Ps33F = 1.11	1.32		ODAMO
CRM197-4, 6B, 18C	CRM197/Ps4 = 1.18	1.41		CRM19
	CRM197/Ps6B = 1.19	1.42		
	CRM197/Ps18C = 1.06	1.20	10	CRM19

In the exemp	olifie	ed mo	olecular	cons	struc	ts, the Mean	of the
(w/w) Protein/t	type	-spec	ific Ps	ratio	is:	1.07±0.097	(9.1%)
corresponding	to	the	Mean	of	the	(mol/mol)	ratio:
1 27+0 12							

In the case when the carrier protein selected is CRM197 (SEQ ID NO:1) and the average MW of each Ps antigen is twice of the above reported value, or 140 K, the molar ratio when the average MW of each Ps antigen is half of the above reported value, or 35 K, the molar ratio protein to each Ps decreases to an average of 0.64.

conjugate antigens on molar basis is fundamental because the immune system processes antigens on molar basis, as Nature does in each chemical or biochemical reaction of transforming matter, therefore referring to the antigen's MW. Accordingly, depending from the average MW of each 30 type-specific Ps antigen and that of the protein carrier, the molar ratios of conjugate antigens are subject to change by the selection of their antigen components. It is mostly preferred that molar ratios between carrier protein and each type-specific Ps antigen be equal to or higher than 1.0 for a 35 likely optimal expression of helper T-dependency. In addition to this molar parameter, it is also important considering the average amount of covalent bonds interposed between the protein and each type-specific carbohydrate antigen, which parallels the activation rate of the type-specific polysaccharide, since this hybrid molecular region is the one experimentally suggested as responsible for the acquired helper T-dependent properties of a conjugate molecule (Arndt and Porro, 1991).

According to the above considerations, another way to change the stoichiometry, and therefore the molar ratio among the components (the carrier protein and each of the carried carbohydrate antigens) of the molecular construct, without changing the average MW of the Ps antigens 50 selected, is the one which refers to the following exemplified molecular model. This model was synthesized by virtue of a modified stoichiometry in the reagents of the chemical reaction above reported, in favor of the protein component which was present in reaction at the reversed (w/w) ratio of the reaction reported in the above chemical equation, with each of the Ps-activated antigens, in order to make evidence of the flexibility of such chemical reaction which may also lead to a product showing the molar ratio between the carrier protein and the carried Ps antigens in favor of the former component. When referring to the vaccine dose related to the stoichiometry of this exemplified molecular construct, it still contains ca. 1.0 µg of CRM197 (SEQ ID NO:1) carrier protein (MW=58.5 K) but only ca. 0.3 µg of each of the three 65 selected DAB-activated, type-specific, polysaccharide antigens (average MW=70.0 K).

	Molecular construct	Average (w/w) ratio CRM197/Ps	Average molar ratio CRM197/Ps
5	CRM197-3, 6A, 7F	CRM197/Ps3 = 2.85	3.41
		CRM197/Ps6A = 3.15 CRM197/Ps7F = 2.70	3.77 3.22
	CRM197-5, 9V, 19F	CRM197/Ps5 = 3.20 CRM197/Ps9V = 2.90	3.82 3.47
		CRM197/Ps19F = 3.47	4.15
10	CRM197-1 14, 19A	CRM197/Ps1 = 2.87 CRM197/Ps14 = 3.15	3.43 3.77
	CDM107 22E 22E 22E	CRM197/Ps19A = 3.45 CRM197/Ps22F = 3.25	4.13 3.89
	CRM197-22F, 23F, 33F	CRM197/Ps22F = 3.23 CRM197/Ps23F = 2.60	3.35
_	CRM197-4, 6B, 18C	CRM197/Ps33F = 3.05 CRM197/Ps4 = 2.90	3.64 3.47
15	0141137 1, 02, 100	CRM197/Ps6B = 3.41	4.07
		CRM197/Ps18C = 3.10	3.71

In the exemplified molecular constructs, the Mean of the protein to each Ps increases to an average of 2.5; in contrast, 20 (w/w) Protein/type-specific Ps ratio is: 3.08±0.24 (7.8%) corresponding to the Mean of the (mol/mol) ratio: 3.69 ± 0.29 .

The above examples make evidence that different stoichiometries of synthesis, as addressed by the amount of The concept of calculating and comparing the features of 25 reagents participating to the chemical equilibrium reported in the above chemical equation, may lead to a molecular construct of different stoichiometry, where the amount of helper T-dependent carrier protein in the molecular construct can be optimally selected according to the optimal expression of immunogenicity of such molecular construct in the various age groups of the human population. In both, above exemplified, 15-valent formulations, containing five molecular constructs each carrying three type-specific Ps, the total amount of carrier protein CRM197 (SEQ ID NO:1) is ca. 5 µg, while the conjugated type-specific Ps are in the amount of ca. 1.0 and ca. 0.3 µg, respectively. Thus, at the dose of CRM197 (SEQ ID NO:1) equivalent to the one present in the Prevnar vaccine for each type-specific Ps conjugated, ca. 2 µg/dose, the total amount of CRM197 (SEQ ID NO:1) here exemplified in the 15-valent formulations would be ca. 10 µg or about 33% of the total amount present in the dose of the 13-valent Prevnar vaccine. Even in the hypothesis of a 23-valent formulation of a conjugate vaccine that would use the molecular model reported here, at comparable amount of protein/dose, the total amount of carrier protein would be significantly lower (ca. 50%) of the amount present in the today's reported 13-valent or 15-valent vaccines formulated by association of separate, single type-specific, conjugate antigens.

Accordingly, it is the purpose of the above reported embodiments to provide evidence of the fact that the disclosed multivalent antigenic molecular construct with builtin epitopes can be synthesized in a broad range of stoichiometric parameters in order to then properly define, in mammalian hosts, the optimal dose of the construct even when considering the different age-groups to be immunized by a broad-spectrum vaccine formulation. It may be here important to recall that past clinical studies had demonstrated that, in adults and toddlers, the immune system could not discriminate, in terms of immunogenicity, among different sizes of the conjugated Ps to the protein carrier CRM197 (SEQ ID NO:1) as well as among multi-point (cross-linked) or mono-point (not cross-linked) models of conjugates (Eby R. et al., in: Modern Approaches to New Vaccines, CSH Ed., 119-123, 1994) even though such studies are not publically available for infants in the range 2-24 months of age.

Example 7: Multivalent Molecular Construct with Built-in Epitopes Based on the Carrier Protein Tetanus Toxoid

In addition to the carrier protein CRM197 (SEQ ID 5 NO:1), other well established helper T-dependent carrier proteins may be used in a polyvalent formulation which considers the molecular construct disclosed in this application. As an example, the Applicant has here considered Tetanus Toxoid (TT) (SEQ ID NO:3 as carrier protein, an universal immunogen safely used in paediatric immunization since many decades ago. In contrast to the carrier protein CRM197 (SEQ ID NO:1), TT (SEQ ID NO:3) has never been formulated in a 13 or 15-valent conjugate 15 vaccine, so that the safety of such a potential high-dose protein vaccine in humans remains to be eventually established. Accordingly, the use of the disclosed multi-valent molecular construct for a protein like TT (SEQ ID NO:3) represents a rational approach for limiting the amount of 20 carrier protein in a 13 or 15-valent (or more) possible formulation based on such helper-T dependent carrier pro-

TT (SEQ ID NO:3) is a derivative of the homologous toxin, chemically treated for having the toxin purposely 25 detoxified for a human use of the immunogen. The MW of the purified toxoid is quite comparable to that of the toxin, that is 1.51×10⁵, encompassing 1,375 amino acids. However, among other features, the marked difference between toxoid and toxin resides in the amount of residual primary amino groups from the Lysine residues which remain in the toxoid structure after the chemical detoxification. An average of 50 reactive amino groups are about to be detected in the toxoid or about 50% of those originally present in the $_{35}$ structure of the toxin, which work as nucleophylic groups in the coupling reaction with the activated bacterial Ps. When comparing the structure of TT (SEQ ID NO:3) to that of CRM197 (SEQ ID NO:1) in terms of capability to compete in the coupling reaction as nucleophylic reagent, one may 40 determine that TT (SEQ ID NO:3) has ca. 50 amino groups/ mole (MW= 1.51×10^{5} for 1, 375 aa) while CRM197 (SEQ ID NO:1) has 40 amino groups/mole (MW=58.5×10⁴ for 535 aa), so that the molar density of them (which we define as "molar nucleophile activity") is 3.6% in TT (SEQ ID 45 NO:3) and 7.5% in CRM197 (SEQ ID NO:1), showing a much higher capability of the latter protein to serve as nucleophylic reagent in a given coupling reaction. However, given the significant difference in the MW of the two proteins (basically a factor=2.6 in favor of TT (SEQ ID 50 NO:3) the molar ratios of the protein carrier, for each of the carried carbohydrate antigens selected in the molecular constructs, may result advantageous for TT (SEQ ID NO:3) when one is willing to limit the amount of carrier protein/ dose in a polyvalent formulation. In fact, at comparable 55 weight dose of the two carrier proteins, TT (SEQ ID NO:3) results to be 2.6 times lower than CRM197 (SEQ ID NO:1) on molar basis. In contrast, attention must be paid to the fact that its MW may limit the possibility to obtain a molar ratio TT/type-specific Ps with a value 1.0 for the optimal induc- 60 tion of T-helper dependency in the host's immune system.

Here below, the Applicant reports on the physical-chemical features of such molecular construct using TT (SEQ ID NO:3) as carrier protein, synthesized according to the method above used for the CRM197-based molecular construct, with a stoichiometry in the reagents which allows the complete glycosylation of the carrier protein. Such a

34

molecular construct can be considered as the basic component for a polyvalent formulation based on the TT (SEQ ID NO:3) carrier protein:

TABLE 10

Molecular construct	Average (w/w) ratio TT/Ps	Average molar ratio TT/Ps
TT-6A, 9V, 23F	TT/Ps 6A = 2.08 TT/Ps 9V = 1.90 TT/Ps 23F = 2.15	0.96 0.90 1.00

In the case of multivalent conjugates of

N. meningitidis Ps and H. influenzae Ps, as additional examples, here below is a comparison between the carrier proteins CRM197 (SEQ ID NO:1) and TT (SEQ ID NO:3) highlighting the relevance of the carrier protein in the different constructs (synthesized according to different stoichiometries as allowed by the general chemical equation above reported), as related to their MW in the definition of the molar ratio (protein/Ps), when considering for the protein and the Ps the MW values above reported in Tables 8-9:

TABLE 11

Molecular construct	Average (w/w) ratio TT/Ps or CRM/Ps	Average molar ratio TT/Ps or CRM/Ps
TT-A, C, Hib	TT/PsA = 1.79	0.83
	TT/PsC = 2.05	0.95
	TT/PsHib = 1.91	0.89
CRM197-A, C, Hib	CRM197/PsA = 2.18	2.60
	CRM197/PsC = 1.87	2.24
	CRM197/PsHib = 1.95	2.33
CRM197- A, C,	CRM197/PsA = 0.78	0.93
W135, Y	CRM197/PsC = 0.97	1.16
,	CRM197/PsW135 = 0.75	0.90
	CRM197/PsY = 0.88	1.05

BIBLIOGRAPHY

Arndt and Porro, Immunobiology of Proteins and Peptides, Edited by M. Z. Atassi, Plenum Press, New York and London, pages 129-148, 1991.

Berzofsky J. A. and Schechter A. N. Mol. Immunol., 18: 751-763, 1981.

Besnard J. et al., Nature, 492: 215-220, 2012.

Bromuro, C, et al. (2010). Vaccine 28, 2615-2623.

Calix J. J. et al. J. Bacterid. 193:5271-5278, 2011.

Dagan R. et al., Vaccine 28 (34): 5513-5523, 2010.

Eby R. et al., Modern Approaches to New Vaccines, CSH Eds., 119-123, 1994.

European patent EP 1868645.

European patent EP 1501542.

European Pharmacopoeia 5th Edition (2008).

Giannini G. et al., Nucl. Acid Res., 12, 4063-4069, 1984.

Han, Y. et al. (2000). Infect. Immun. 68, 1649-1654.

Rabat E. A., J. Immunol. 97: 1-11, 1966.

Laemmli U. K., Nature 227, 680-685, 1970.

Moreau M. et al., Carbohydrate Res., 182 (1): 79-99, 1988. Nanra J. S. et al., Human Vaccines and Immunotherapeutics, 9:3, 480-487, 2013.

O'Riordan K. and Lee J. C., Clin. Microbiol. Rev., 17: 218-234, 2004.

Porro M. et al., J. Infect. Dis., 142 (5), 716-724, 1980.

Porro M. et al., Anal. Biochem. 118: 301-306, 1981.

Porro M. et al. Medecine Iropicale, 43: 129-132, 1983.

Porro M. et al. Molecular Immunology, 22: 907-919, 1985.

Porro M. et al. Molecular Immunology, 23: 385-391, 1986. Porro M. Edited by R. Bell and G. Torrigiani (WHO), pages 279-306; New York 1987.

Pride M. W. et al., Clin. And Vaccine Immunol. 19 (8): 1131-1141, 2012.

Rebers P. A. and Heidelberger M. J. Am. Chem. Soc, 83: 3056-3059, 1961.

Reeves R. E. and Goebels W. F., J. Biol. Chem., 139: 511-519, 1941.

Richter S. et al., Clin. Infect. Dis., 48:23-33, 2009. Rustici A. et al., Science 259: 361-365, 1993.

Satzke C. et al., J. Clin. Microbiol., £8(11): 4298, 2010.

Schwebach, J. R., et al. 2002. Infect Immun 70: 2566-2575. Swanson D., IDSA meeting, Boston, 2011.

36

Towbin H. et al., PNAS 76: 4350-4354, 1979.

Uchida T. et al., J. Biol. Chem. 248, 3838-3844, 1973.

U.S. Pat. No. 4,711,779.

U.S. Pat. No. 5,306,492.

Xin, H. et al. (2008). Proc. Natl. Acad. Sci. U.S.A. 105, 13526-13531.

Yao K H et al., Diag. Microbiol. Infect. Dis., 70(3):291-8, 2011.

Zucker D. and Murphy J. R., Mol. Immunol. 21, 785-793, 1984

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 7 <210> SEQ ID NO 1 <211> LENGTH: 535 <212> TYPE: PRT <213> ORGANISM: Corynebacterium diphtheriae <400> SEOUENCE: 1 Gly Ala Asp Asp Val Val Asp Ser Ser Lys Ser Phe Val Met Glu Asn 1 $$ 5 $$ 10 $$ 15 Phe Ser Ser Tyr His Gly Thr Lys Pro Gly Tyr Val Asp Ser Ile Gln Lys Gly Ile Gln Lys Pro Lys Ser Gly Thr Gln Gly Asn Tyr Asp Asp Asp Trp Lys Glu Phe Tyr Ser Thr Asp Asn Lys Tyr Asp Ala Ala Gly 55 Tyr Ser Val Asp Asn Glu Asn Pro Leu Ser Gly Lys Ala Gly Gly Val Val Lys Val Thr Tyr Pro Gly Leu Thr Lys Val Leu Ala Leu Lys Val Asp Asn Ala Glu Thr Ile Lys Lys Glu Leu Gly Leu Ser Leu Thr Glu Pro Leu Met Glu Gln Val Gly Thr Glu Glu Phe Ile Lys Arg Phe Gly Asp Gly Ala Ser Arg Val Val Leu Ser Leu Pro Phe Ala Glu Gly Ser Ser Ser Val Glu Tyr Ile Asn Asn Trp Glu Gln Ala Lys Ala Leu Ser Val Glu Leu Glu Ile Asn Phe Glu Thr Arg Gly Lys Arg Gly Gln Asp 170 Ala Met Tyr Glu Tyr Met Ala Gln Ala Cys Ala Gly Asn Arg Val Arg 185 Arg Ser Val Gly Ser Ser Leu Ser Cys Ile Asn Leu Asp Trp Asp Val 200 Ile Arg Asp Lys Thr Lys Thr Lys Ile Glu Ser Leu Lys Glu His Gly 215 Pro Ile Lys Asn Lys Met Ser Glu Ser Pro Asn Lys Thr Val Ser Glu 230 235 Glu Lys Ala Lys Gln Tyr Leu Glu Glu Phe His Gln Thr Ala Leu Glu His Pro Glu Leu Ser Glu Leu Lys Thr Val Thr Gly Thr Asn Pro Val 260 265 Phe Ala Gly Ala Asn Tyr Ala Ala Trp Ala Val Asn Val Ala Gln Val

280

-continued

Ile	Asp 290	Ser	Glu	Thr	Ala	Asp 295	Asn	Leu	Glu	ràa	Thr 300	Thr	Ala	Ala	Leu
Ser 305	Ile	Leu	Pro	Gly	Ile 310	Gly	Ser	Val	Met	Gly 315	Ile	Ala	Asp	Gly	Ala 320
Val	His	His	Asn	Thr 325	Glu	Glu	Ile	Val	Ala 330	Gln	Ser	Ile	Ala	Leu 335	Ser
Ser	Leu	Met	Val 340	Ala	Gln	Ala	Ile	Pro 345	Leu	Val	Gly	Glu	Leu 350	Val	Asp
Ile	Gly	Phe	Ala	Ala	Tyr	Asn	Phe	Val	Glu	Ser	Ile	Ile 365	Asn	Leu	Phe
Gln	Val 370	Val	His	Asn	Ser	Tyr 375	Asn	Arg	Pro	Ala	Tyr 380	Ser	Pro	Gly	His
Lys 385	Thr	Gln	Pro	Phe	Leu 390	His	Asp	Gly	Tyr	Ala 395	Val	Ser	Trp	Asn	Thr 400
Val	Glu	Asp	Ser	Ile 405	Ile	Arg	Thr	Gly	Phe 410	Gln	Gly	Glu	Ser	Gly 415	His
Asp	Ile	Lys	Ile 420	Thr	Ala	Glu	Asn	Thr 425	Pro	Leu	Pro	Ile	Ala 430	Gly	Val
Leu	Leu	Pro 435	Thr	Ile	Pro	Gly	Lys 440	Leu	Asp	Val	Asn	Lys 445	Ser	Lys	Thr
His	Ile 450	Ser	Val	Asn	Gly	Arg 455	Lys	Ile	Arg	Met	Arg 460	Сув	Arg	Ala	Ile
Asp 465	Gly	Asp	Val	Thr	Phe 470	Сув	Arg	Pro	Lys	Ser 475	Pro	Val	Tyr	Val	Gly 480
Asn	Gly	Val	His	Ala 485	Asn	Leu	His	Val	Ala 490	Phe	His	Arg	Ser	Ser 495	Ser
Glu	Lys	Ile	His 500	Ser	Asn	Glu	Ile	Ser 505	Ser	Asp	Ser	Ile	Gly 510	Val	Leu
Gly	Tyr	Gln 515	Lys	Thr	Val	Asp	His 520	Thr	Lys	Val	Asn	Ser 525	Lys	Leu	Ser
Leu	Phe 530	Phe	Glu	Ile	ГАЗ	Ser 535									
	0> SI l> LI														
	2 > T 3 > OF			Corr	zneh:	acte	rium	din	nthei	riae					
)> SI				y IICD	4000	LIGH	arp.		Luc					
Met 1	Ser	Arg	Lys	Leu 5	Phe	Ala	Ser	Ile	Leu 10	Ile	Gly	Ala	Leu	Leu 15	Gly
Ile	Gly	Ala	Pro 20	Pro	Ser	Ala	His	Ala 25	Gly	Ala	Asp	Asp	Val 30	Val	Asp
Ser	Ser	Lуз 35	Ser	Phe	Val	Met	Glu 40	Asn	Phe	Ser	Ser	Tyr 45	His	Gly	Thr
Lys	Pro 50	Gly	Tyr	Val	Asp	Ser 55	Ile	Gln	Lys	Gly	Ile 60	Gln	Lys	Pro	ГÀа
Ser 65	Gly	Thr	Gln	Gly	Asn 70	Tyr	Asp	Asp	Asp	Trp 75	Lys	Gly	Phe	Tyr	Ser 80
Thr	Asp	Asn	Lys	Tyr 85	Asp	Ala	Ala	Gly	Tyr 90	Ser	Val	Asp	Asn	Glu 95	Asn
Pro	Leu	Ser	Gly 100	Lys	Ala	Gly	Gly	Val 105	Val	Lys	Val	Thr	Tyr 110	Pro	Gly
Leu	Thr	Lys 115	Val	Leu	Ala	Leu	Lys 120	Val	Asp	Asn	Ala	Glu 125	Thr	Ile	ГЛа

-continued

Lys	Glu 130	Leu	Gly	Leu	Ser	Leu 135	Thr	Glu	Pro	Leu	Met 140	Glu	Gln	Val	Gly
Thr 145	Glu	Glu	Phe	Ile	Lys 150	Arg	Phe	Gly	Asp	Gly 155	Ala	Ser	Arg	Val	Val 160
Leu	Ser	Leu	Pro	Phe 165	Ala	Glu	Gly	Ser	Ser 170	Ser	Val	Glu	Tyr	Ile 175	Asn
Asn	Trp	Glu	Gln 180	Ala	Lys	Ala	Leu	Ser 185	Val	Glu	Leu	Glu	Ile 190	Asn	Phe
Glu	Thr	Arg 195	Gly	ГÀа	Arg	Gly	Gln 200	Asp	Ala	Met	Tyr	Glu 205	Tyr	Met	Ala
Gln	Ala 210	Cys	Ala	Gly	Asn	Arg 215	Val	Arg	Arg	Ser	Val 220	Gly	Ser	Ser	Leu
Ser 225	Cya	Ile	Asn	Leu	Asp 230	Trp	Asp	Val	Ile	Arg 235	Asp	Lys	Thr	Lys	Thr 240
Lys	Ile	Glu	Ser	Leu 245	Lys	Glu	His	Gly	Pro 250	Ile	Lys	Asn	Lys	Met 255	Ser
Glu	Ser	Pro	Asn 260	Lys	Thr	Val	Ser	Glu 265	Glu	Lys	Ala	Lys	Gln 270	Tyr	Leu
Glu	Glu	Phe 275	His	Gln	Thr	Ala	Leu 280	Glu	His	Pro	Glu	Leu 285	Ser	Glu	Leu
Lys	Thr 290	Val	Thr	Gly	Thr	Asn 295	Pro	Val	Phe	Ala	Gly 300	Ala	Asn	Tyr	Ala
Ala 305	Trp	Ala	Val	Asn	Val 310	Ala	Gln	Val	Ile	Asp 315	Ser	Glu	Thr	Ala	Asp 320
Asn	Leu	Glu	Lys	Thr 325	Thr	Ala	Ala	Leu	Ser 330	Ile	Leu	Pro	Gly	Ile 335	Gly
Ser	Val	Met	Gly 340	Ile	Ala	Asp	Gly	Ala 345	Val	His	His	Asn	Thr 350	Glu	Glu
Ile	Val	Ala 355	Gln	Ser	Ile	Ala	Leu 360	Ser	Ser	Leu	Met	Val 365	Ala	Gln	Ala
Ile	Pro 370	Leu	Val	Gly	Glu	Leu 375	Val	Asp	Ile	Gly	Phe 380	Ala	Ala	Tyr	Asn
Phe 385	Val	Glu	Ser	Ile	Ile 390	Asn	Leu	Phe	Gln	Val 395	Val	His	Asn	Ser	Tyr 400
Asn	Arg	Pro	Ala	Tyr 405	Ser	Pro	Gly	His	Lys 410	Thr	Gln	Pro	Phe	Leu 415	His
Asp	Gly	Tyr	Ala 420	Val	Ser	Trp	Asn	Thr 425	Val	Glu	Asp	Ser	Ile 430	Ile	Arg
Thr	Gly	Phe 435	Gln	Gly	Glu	Ser	Gly 440	His	Asp	Ile	Lys	Ile 445	Thr	Ala	Glu
Asn	Thr 450	Pro	Leu	Pro	Ile	Ala 455	Gly	Val	Leu	Leu	Pro 460	Thr	Ile	Pro	Gly
Lys 465	Leu	Asp	Val	Asn	Lys 470	Ser	Lys	Thr	His	Ile 475	Ser	Val	Asn	Gly	Arg 480
Lys	Ile	Arg	Met	Arg 485	CÀa	Arg	Ala	Ile	Asp 490	Gly	Asp	Val	Thr	Phe 495	Cys
Arg	Pro	Lys	Ser 500	Pro	Val	Tyr	Val	Gly 505	Asn	Gly	Val	His	Ala 510	Asn	Leu
His	Val	Ala 515	Phe	His	Arg	Ser	Ser 520	Ser	Glu	Lys	Ile	His 525	Ser	Asn	Glu
Ile	Ser 530	Ser	Asp	Ser	Ile	Gly 535	Val	Leu	Gly						

-continued

<21	l> LI	ENGTI	O NO												
	2 > T 3 > OF		PRT ISM:	Clos	stri	dium	teta	ani							
< 400	D> SI	EQUEI	NCE:	3											
Arg 1	Ile	Pro	Ile	Thr 5	Ile	Asn	Asn	Phe	Arg 10	Tyr	Ser	Val	Pro	Val 15	Asn
Asn	Asp	Thr	Ile 20	Ile	Met	Met	Glu	Pro 25	Pro	Tyr	Cys	Lys	Gly 30	Leu	Asp
Ile	Tyr	Tyr 35	Lys	Ala	Phe	Lys	Ile 40	Thr	Asp	Arg	Ile	Trp 45	Ile	Val	Pro
Glu	Arg 50	Tyr	Glu	Phe	Gly	Thr 55	Lys	Pro	Glu	Asp	Phe 60	Asn	Pro	Pro	Ser
Ser 65	Leu	Ile	Glu	Gly	Ala 70	Ser	Glu	Tyr	Tyr	Asp 75	Pro	Asn	Tyr	Leu	Arg 80
Thr	Asp	Ser	Asp	Lys 85	Asp	Arg	Phe	Leu	Gln 90	Thr	Met	Val	Lys	Leu 95	Phe
Asn	Arg	Ile	Lys 100	Asn	Asn	Val	Ala	Gly 105	Glu	Ala	Leu	Leu	Asp 110	Lys	Ile
Ile	Asn	Ala 115	Ile	Pro	Tyr	Leu	Gly 120	Asn	Ser	Tyr	Ser	Leu 125	Leu	Asp	ГÀа
Phe	Asp 130	Thr	Asn	Ser	Asn	Ser 135	Val	Ser	Phe	Asn	Leu 140	Ser	Glu	Gln	Asp
Pro 145	Ser	Gly	Ala	Thr	Thr 150	Lys	Ser	Ala	Met	Leu 155	Thr	Ser	Leu	Ile	Ile 160
Phe	Gly	Pro	Gly	Pro 165	Val	Leu	Asn	Lys	Asn 170	Glu	Val	Arg	Gly	Ile 175	Val
Leu	Arg	Val	Asp 180	Asn	Lys	Asn	Tyr	Phe 185	Pro	Сув	Arg	Asp	Gly 190	Phe	Gly
Ser	Ile	Met 195	Gln	Met	Thr	Phe	Cys 200	Pro	Glu	Tyr	Ile	Pro 205	Thr	Phe	Asp
Asn	Val 210	Ile	Glu	Asn	Ile	Thr 215	Ser	Leu	Thr	Ile	Gly 220	Lys	Ser	Lys	Tyr
Phe 225	Gln	Asp	Pro	Ala	Leu 230	Leu	Leu	Met	His	Glu 235	Leu	Ile	His	Val	Leu 240
His	Gly	Leu	Tyr	Gly 245	Met	Gln	Val	Ser	Ser 250	His	Glu	Ile	Ile	Pro 255	Ser
Lys	Gln	Glu	Ile 260	Tyr	Met	Gln	His	Thr 265	Tyr	Pro	Ile	Ser	Ala 270	Glu	Glu
Leu	Phe	Thr 275	Phe	Gly	Gly	Gln	Asp 280	Ala	Asn	Leu	Ile	Ser 285	Ile	Asp	Ile
Lys	Asn 290	Asp	Leu	Tyr	Glu	Lys 295	Thr	Leu	Asn	Asp	Tyr 300	Lys	Ala	Ile	Ala
Asn 305	Lys	Leu	Ser	Gln	Val 310	Thr	Ser	Cys	Asn	Asp 315	Pro	Asn	Ile	Asp	Ile 320
Asp	Ser	Tyr	Lys	Gln 325	Ile	Tyr	Gln	Gln	Lys	Tyr	Gln	Phe	Asp	Lys 335	Asp
Ser	Asn	Gly	Gln 340	Tyr	Ile	Val	Asn	Glu 345	Asp	Lys	Phe	Gln	Ile 350	Leu	Tyr
Asn	Ser	Ile 355	Met	Tyr	Gly	Phe	Thr		Ile	Glu	Leu	Gly 365		Lys	Phe
Asn	Ile 370		Thr	Arg	Leu	Ser 375		Phe	Ser	Met	Asn 380		Asp	Pro	Val

				-
_	con	T. 1	ทเ	1ec

_															
185 385	Ile	Pro	Asn	Leu	Leu 390	Asp	Asp	Thr	Ile	Tyr 395	Asn	Asp	Thr	Glu	Gly 400
Phe	Asn	Ile	Glu	Ser 405	Lys	Asp	Leu	Lys	Ser 410	Glu	Tyr	Lys	Gly	Gln 415	Asn
Met	Arg	Val	Asn 420	Thr	Asn	Ala	Phe	Arg 425	Asn	Val	Asp	Gly	Ser 430	Gly	Leu
Val	Ser	Lys 435	Leu	Ile	Gly	Leu	Cys 440	ГЛа	Lys	Ile	Ile	Pro 445	Pro	Thr	Asn
Ile	Arg 450	Glu	Asn	Leu	Tyr	Asn 455	Arg	Thr	Ala	Ala	Leu 460	Thr	Asp	Leu	Gly
Gly 465	Glu	Leu	Cys	Ile	Lys 470	Ile	Lys	Asn	Glu	Asp 475	Leu	Ile	Phe	Ile	Ala 480
Glu	Lys	Asn	Ser	Phe 485	Ser	Glu	Glu	Pro	Phe 490	Gln	Asp	Glu	Ile	Val 495	Ser
Tyr	Asn	Thr	Lys 500	Asn	Lys	Pro	Leu	Asn 505	Phe	Asn	Tyr	Ser	Leu 510	Asp	Lys
Ile	Ile	Leu 515	Asp	Tyr	Asn	Leu	Gln 520	Ser	Lys	Ile	Thr	Leu 525	Pro	Asn	Asp
Arg	Thr 530	Thr	Pro	Val	Thr	Lys 535	Gly	Ile	Pro	Tyr	Ala 540	Pro	Glu	Tyr	Lys
Ser 545	Asn	Ala	Ala	Ser	Thr 550	Ile	Glu	Ile	His	Asn 555	Ile	Asp	Asp	Asn	Thr 560
Ile	Tyr	Gln	Tyr	Leu 565	Tyr	Ala	Gln	Lys	Ser 570	Pro	Thr	Thr	Leu	Gln 575	Arg
Ile	Thr	Met	Thr 580	Asn	Ser	Val	Asp	Asp 585	Ala	Leu	Ile	Asn	Ser 590	Thr	Lys
Ile	Tyr	Ser 595	Tyr	Phe	Pro	Ser	Val 600	Ile	Ser	ГЛа	Val	Asn 605	Gln	Gly	Ala
Gln	Gly 610	Ile	Leu	Phe	Leu	Gln 615	Trp	Val	Arg	Asp	Ile 620	Ile	Asp	Asp	Phe
Thr 625	Asn	Glu	Ser	Ser	Gln 630	Lys	Thr	Thr	Ile	Asp 635	Lys	Ile	Ser	Asp	Val 640
Ser	Thr	Ile	Val	Pro 645	Tyr	Ile	Gly	Pro	Ala 650	Leu	Asn	Ile	Val	Lys 655	Gln
Gly	Tyr	Glu	Gly 660	Asn	Phe	Ile	Gly	Ala 665	Leu	Glu	Thr	Thr	Gly 670	Val	Val
Leu	Leu	Leu 675	Glu	Tyr	Ile	Pro	Glu 680	Ile	Thr	Leu	Pro	Val 685	Ile	Ala	Ala
Leu	Ser 690	Ile	Ala	Glu	Ser	Ser 695	Thr	Gln	Lys	Glu	Lys 700	Ile	Ile	Lys	Thr
Ile 705	Asp	Asn	Phe	Leu	Glu 710	Lys	Arg	Tyr	Glu	Lys 715	Trp	Ile	Glu	Val	Tyr 720
Lys	Leu	Val	Lys	Ala 725	Lys	Trp	Leu	Gly	Thr 730	Val	Asn	Thr	Gln	Phe 735	Gln
Lys	Arg	Ser	Tyr 740	Gln	Met	Tyr	Arg	Ser 745	Leu	Glu	Tyr	Gln	Val 750	Asp	Ala
Ile	Lys	Lys 755	Ile	Ile	Asp	Tyr	Glu 760	Tyr	Lys	Ile	Tyr	Ser 765	Gly	Pro	Asp
Lys	Glu 770	Gln	Ile	Ala	Asp	Glu 775	Ile	Asn	Asn	Leu	Lys 780	Asn	Lys	Leu	Glu
Glu 785	Lys	Ala	Asn	Lys	Ala 790	Met	Ile	Asn	Ile	Asn 795	Ile	Phe	Met	Arg	Glu 800

-continued

Ser	Ser	Arg	Ser	Phe 805	Leu	Val	Asn	Gln	Met 810	Ile	Asn	Glu	Thr	Lys 815	
Gln	Leu	Leu	Glu 820	Phe	Asp	Thr	Gln	Ser 825	Lys	Asn	Ile	Leu	Met 830		Tyr
Ile	Lys	Ala 835	Asn	Ser	ГЛа	Phe	Ile 840	Gly	Ile	Thr	Glu	Leu 845	_	Lys	Leu
Glu	Ser 850	Lys	Ile	Asn	Lys	Val 855	Phe	Ser	Thr	Pro	Ile 860	Pro	Phe	. Ser	Tyr
Ser 865	Lys	Asn	Leu	Asp	Cys 870	Trp	Val	Asp	Asn	Glu 875	Glu	Asp	Ile	Asp	Val 880
Ile	Leu	Lys	Lys	Ser 885	Thr	Ile	Leu	Asn	Leu 890	Asp	Ile	Asn	Asn	Asp 895	
Ile	Ser	Asp	Ile 900	Ser	Gly	Phe	Asn	Ser 905	Ser	Val	Ile	Thr	Tyr 910		Asp
Ala	Gln	Leu 915	Val	Pro	Gly	Ile	Asn 920	Gly	Lys	Ala	Ile	His 925		. Val	Asn
Asn	Glu 930	Ser	Ser	Glu	Val	Ile 935	Val	His	Lys	Ala	Met 940	Asp	Ile	Glu	Tyr
Asn 945	Asp	Met	Phe	Asn	Asn 950	Phe	Thr	Val	Ser	Phe 955	Trp	Leu	Arg	Val	Pro 960
Lys	Val	Ser	Ala	Ser 965	His	Leu	Glu	Gln	Tyr 970	Asp	Thr	Asn	Glu	. Tyr 975	
Ile	Ile	Ser	Ser 980	Met	Lys	Lys	Tyr	Ser 985	Leu	Ser	Ile	Gly	Ser	_	Trp
Ser	Val	Ser 995	Leu	ГÀа	Gly	Asn	Asn		ı Ile	e Trp	Th		u L 05	ys A	sp Ser
Ala	Gly 1010		ı Val	l Arg	g Gln	Ile 101		nr Pl	ne Ai	rg As		eu 020	Ser	Asp	Lys
Phe	Asn 1025		а Туз	r Leu	ı Ala	Asr 103	_	ys T:	rp Va	al Ph		le 035	Thr	Ile	Thr
Asn	Asp 1040		g Lei	ı Ser	: Ser	Ala 104		en Le	eu Ty	yr II		sn 050	Gly	Val	Leu
Met	Gly 1055		Ala	a Glu	ı Ile	Th:		ly L	eu Gi	ly Al		le 065	Arg	Glu	Asp
Asn	Asn 1070		e Thi	r Leu	ı Lys	Let		sp A:	rg C	ys As		sn 080	Asn	Asn	Gln
Tyr	Val		: Ile	e Asp) Lys		e Ai	rg I	le Pi	ne Cy		ys 095	Ala	Leu	Asn
Pro		Glu	ı Ile	e Glu	ı Lys	Le:	_	yr Tl	nr Se	er Ty	/r L		Ser	Ile	Thr
Phe		Arg	g Asp	Phe	e Trp		y As	en Pi	ro Le	eu Ai	rg T		Asp	Thr	Glu
Tyr		Leu	ı Ile	e Pro	Val		a Ty	yr Se	er Se	er Ly	/s A		Val	Gln	Leu
Lys	Asn	Ile	e Thi	c Asp) Tyr	Met	t Ty	yr Le	eu Tl	nr As	an A	la	Pro	Ser	Tyr
Thr		Gl	/ Lys	s Lev	ı Asn		e T∑	yr T	yr Ai	rg Ai	rg L		Tyr	Ser	Gly
	1160					116						170			
Leu	Lys 1175		e Ile	e Ile	. Lys	Arg 118		yr Tl	nr Pi	ro As		sn 185	Glu	Ile	Asp
Ser	Phe 1190		l Arç	g Sei	Gly	Asp 119		ne I	le Ly	∕a r∙		yr 200	Val	Ser	Tyr

-continued

Asn Asn Asn Glu His Ile Val Gly Tyr Pro Lys Asp Gly Asn Ala 1205 1210 Phe Asn Asn Leu Asp Arg Ile Leu Arg Val Gly Tyr Asn Ala Pro Gly Ile Pro Leu Tyr Lys Lys Met Glu Ala Val Lys Leu Arg Asp 1240 Leu Lys Thr Tyr Ser Val Gln Leu Lys Leu Tyr Asp 1255 <210> SEQ ID NO 4 <211> LENGTH: 364 <212> TYPE: PRT <213 > ORGANISM: Haemophilus influenzae <400> SEQUENCE: 4 Met Lys Leu Lys Thr Leu Ala Leu Ser Leu Leu Ala Ala Gly Val Leu Ala Gly Cys Ser Ser His Ser Ser Asn Met Ala Asn Thr Gln Met Lys Ser Asp Lys Ile Ile Ile Ala His Arg Gly Ala Ser Gly Tyr Leu Pro 40 Glu His Thr Leu Glu Ser Lys Ala Leu Ala Phe Ala Gln Gln Ala Asp Tyr Leu Glu Gln Asp Leu Ala Met Thr Lys Asp Gly Arg Leu Val Val Ile His Asp His Phe Leu Asp Gly Leu Thr Asp Val Ala Lys Lys Phe 90 Pro His Arg His Arg Lys Asp Gly Arg Tyr Tyr Val Ile Asp Phe Thr 105 Leu Lys Glu Ile Gln Ser Leu Glu Met Thr Glu Asn Phe Glu Thr Lys 120 Asp Gly Lys Gln Ala Gln Val Tyr Pro Asn Arg Phe Pro Leu Trp Lys Ser His Phe Arg Ile His Thr Phe Glu Asp Glu Ile Glu Phe Ile Gln 150 155 Gly Leu Glu Lys Ser Thr Gly Lys Lys Val Gly Ile Tyr Pro Glu Ile Lys Ala Pro Trp Phe His His Gln Asn Gly Lys Asp Ile Ala Ala Glu Thr Leu Lys Val Leu Lys Lys Tyr Gly Tyr Asp Lys Lys Thr Asp Met Val Tyr Leu Gln Thr Phe Asp Phe Asn Glu Leu Lys Arg Ile Lys Thr Glu Leu Leu Pro Gln Met Gly Met Asp Leu Lys Leu Val Gln Leu Ile Ala Tyr Thr Asp Trp Lys Glu Thr Gln Glu Lys Asp Pro Lys Gly Tyr 250 $\hbox{Trp Val Asn Tyr Asn Tyr Asp Trp Met Phe Lys Pro Gly Ala Met Ala } \\$ 265 Glu Val Val Lys Tyr Ala Asp Gly Val Gly Pro Gly Trp Tyr Met Leu 280 Val Asn Lys Glu Glu Ser Lys Pro Asp Asn Ile Val Tyr Thr Pro Leu 295 300 Val Lys Glu Leu Ala Gln Tyr Asn Val Glu Val His Pro Tyr Thr Val 310 315

-continued

Arg Lys Asp Ala Leu Pro Glu Phe Phe Thr Asp Val Asn Gln Met Tyr 325 330 Asp Ala Leu Leu Asn Lys Ser Gly Ala Thr Gly Val Phe Thr Asp Phe 345 Pro Asp Thr Gly Val Glu Phe Leu Lys Gly Ile Lys 360 <210> SEQ ID NO 5 <211> LENGTH: 609 <212> TYPE: PRT <213> ORGANISM: Streptococcus pneumoniae <400> SEQUENCE: 5 Met Asn Lys Lys Met Ile Leu Thr Ser Leu Ala Ser Val Ala Ile Leu Gly Ala Gly Phe Val Thr Ser Gln Pro Thr Phe Val Arg Ala Glu $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}$ Glu Ala Pro Val Ala Ser Gln Ser Lys Ala Glu Lys Asp Tyr Asp Thr Ala Lys Arg Asp Ala Glu Asn Ala Lys Lys Ala Leu Glu Glu Ala Lys Arg Ala Gln Lys Lys Tyr Glu Asp Asp Gln Lys Lys Thr Glu Glu Lys 65 70 75 80 Ala Lys Glu Glu Lys Gln Ala Ser Glu Ala Glu Gln Lys Ala Asn Leu Gln Tyr Gln Leu Lys Leu Arg Glu Tyr Ile Gln Lys Thr Gly Asp Arg 105 Ser Lys Ile Gln Lys Glu Met Glu Glu Ala Glu Lys Lys His Lys Asn 120 Ala Lys Ala Glu Phe Asp Lys Val Arg Gly Lys Val Ile Pro Ser Ala 135 Glu Glu Leu Lys Glu Thr Arg Arg Lys Ala Glu Glu Ala Lys Ala Lys Glu Ala Glu Leu Thr Lys Lys Val Glu Glu Ala Glu Lys Lys Val Thr 170 Glu Ala Lys Gln Lys Leu Asp Ala Glu Arg Ala Lys Glu Val Ala Leu Gln Ala Lys Ile Ala Glu Leu Glu Asn Gln Val His Arg Leu Glu Thr Glu Leu Lys Glu Ile Asp Glu Ser Asp Ser Glu Asp Tyr Val Lys Glu Gly Leu Arg Val Pro Leu Gln Ser Glu Leu Asp Val Lys Gln Ala Lys Leu Ser Lys Leu Glu Glu Leu Ser Asp Lys Ile Asp Glu Leu Asp Ala Glu Ile Ala Lys Leu Glu Lys Asp Val Glu Asp Phe Lys Asn Ser Asp Gly Glu Tyr Ser Ala Leu Tyr Leu Glu Ala Ala Glu Lys Asp Leu Val 280 Ala Lys Lys Ala Glu Leu Glu Lys Thr Glu Ala Asp Leu Lys Lys Ala 295 Val Asn Glu Pro Glu Lys Pro Ala Glu Glu Pro Glu Asn Pro Ala Pro 310 315 Ala Pro Lys Pro Ala Pro Ala Pro Gln Pro Glu Lys Pro Ala Pro Ala 330

-continued

```
Pro Ala Pro Lys Pro Glu Lys Ser Ala Asp Gln Gln Ala Glu Glu Asp
           340
                               345
Tyr Ala Arg Arg Ser Glu Glu Glu Tyr Asn Arg Leu Thr Gln Gln Gln
Pro Pro Lys Ala Glu Lys Pro Ala Pro Ala Pro Val Pro Lys Pro Glu
             375
Gln Pro Ala Pro Ala Pro Lys Thr Gly Trp Lys Gln Glu Asn Gly Met
Trp Tyr Phe Tyr Asn Thr Asp Gly Ser Met Ala Thr Gly Trp Leu Gln
Asn Asn Gly Ser Trp Tyr Tyr Leu Asn Ser Asn Gly Ala Met Ala Thr
Gly Trp Leu Gln Tyr Asn Gly Ser Trp Tyr Tyr Leu Asn Ala Asn Gly
Ala Met Ala Thr Gly Trp Ala Lys Val Asn Gly Ser Trp Tyr Tyr Leu
Asn Ala Asn Gly Ala Met Ala Thr Gly Trp Leu Gln Tyr Asn Gly Ser
Trp Tyr Tyr Leu Asn Ala Ser Gly Ala Met Ala Thr Gly Trp Ala Lys
                                   490
Val Asn Gly Ser Trp Tyr Tyr Leu Asn Ala Asn Gly Ser Met Ala Thr
                             505
Gly Trp Leu Gln Tyr Asn Gly Ser Trp Tyr Tyr Leu Asn Ala Asn Gly
                          520
Ala Met Ala Thr Gly Trp Ala Lys Val Asn Gly Ser Trp Tyr Tyr Leu
Asn Ala Asn Gly Ser Met Ala Thr Gly Trp Val Lys Asp Gly Asp Thr
                   550
                                       555
Trp Tyr Tyr Leu Glu Ala Ser Gly Ala Met Lys Ala Ser Gln Trp Phe
                                  570
Lys Val Ser Asp Lys Trp Tyr Tyr Val Asn Gly Leu Gly Ala Leu Ala
                               585
Val Asn Thr Thr Val Asp Gly Tyr Glu Val Asn Ala Asn Gly Glu Trp
                          600
Val
<210> SEQ ID NO 6
<211> LENGTH: 769
<212> TYPE: PRT
<213> ORGANISM: Streptococcus pneumoniae
<400> SEOUENCE: 6
Met Phe Lys Ser Asn Tyr Glu Arg Lys Met Cys Tyr Ser Ile Arg Lys
Phe Ser Ile Gly Val Ala Ser Val Ala Val Ala Ser Leu Val Met Gly
Ser Val Val His Ala Thr Glu Asn Glu Gly Thr Thr Gln Ala Pro Thr
                          40
Ser Ser Asn Arg Gly Asn Glu Ser Gln Ala Glu Gln Arg Arg Glu Leu
                      55
Asp Leu Glu Arg Asp Lys Val Lys Lys Glu Val Arg Glu Tyr Lys Glu
Lys Lys Val Lys Glu Leu Tyr Ser Lys Ser Thr Lys Ser Arg His Lys
                                 90
```

53 54 ed

-continue

rys	Thr	Val	Asp 100	Ile	Val	Asn	Lys	Leu 105	Gln	Asn	Ile	Asn	Asn 110	Glu	Tyr
Leu	Asn	Lys 115	Ile	Ile	Gln	Ser	Thr 120	Ser	Thr	Tyr	Glu	Glu 125	Leu	Gln	Lys
Leu	Met 130	Met	Glu	Ser	Gln	Ser 135	Glu	Val	Asp	Lys	Ala 140	Val	Ser	Glu	Phe
Glu 145	Lys	Asp	Leu	Ser	Ser 150	Ser	Ser	Ser	Ser	Gly 155	Ser	Ser	Thr	Glu	Pro 160
Glu	Ala	Ser	Asp	Thr 165	Ala	ГЛа	Pro	Asn	Lys 170	Pro	Thr	Glu	Leu	Glu 175	Lys
Lys	Val	Ala	Glu 180	Ala	Gln	Gln	Lys	Val 185	Glu	Glu	Ala	Glu	Lys 190	Lys	Ala
Lys	Asp	Gln 195	Lys	Glu	Glu	Asp	Tyr 200	Arg	Asn	Tyr	Pro	Thr 205	Ile	Thr	Tyr
Lys	Thr 210	Leu	Glu	Leu	Glu	Ile 215	Ala	Glu	Phe	Asp	Val 220	Lys	Val	Lys	Glu
Ala 225	Glu	Leu	Glu	Leu	Val 230	Lys	Val	Lys	Ala	Lys 235	Glu	Ser	Arg	Asp	Glu 240
Lys	Lys	Ile	Lys	Gln 245	Ala	Glu	Ala	Glu	Val 250	Glu	Ser	Lys	Gln	Ala 255	Glu
Ala	Thr	Arg	Leu 260	Lys	Lys	Ile	Lys	Thr 265	Asp	Arg	ГАЗ	Lys	Ala 270	Glu	Glu
Glu	Ala	Lys 275	Leu	Lys	Glu	Ala	Val 280	Glu	Lys	Asn	Ala	Ala 285	Thr	Ser	Glu
Gln	Gly 290	Lys	Pro	Lys	Arg	Arg 295	Val	Lys	Arg	Gly	Ala 300	Leu	Gly	Glu	Gln
Ala 305	Thr	Pro	Asp	ГÀа	Lys	Asp	Tyr	Phe	Glu	Lys 315	Asp	Phe	Arg	Pro	Ala 320
Phe	Asn	Lys	Asn	Gln 325	Gln	Met	Val	Ala	Ile 330	Gln	Glu	Ser	Leu	Asn 335	Lys
Leu	Asp	Gly	Glu 340	Thr	Lys	Thr	Val	Pro 345	Asp	Gly	Ala	Lys	Leu 350	Thr	Gly
Glu	Ala	Gly 355	Asn	Ala	Tyr	Asn	Glu 360	Val	Arg	Asp	Tyr	Ala 365	Ile	Lys	Val
Val	Ser 370	Glu	Asn	Lys	Lys	Leu 375	Leu	Ser	Gln	Thr	Ala 380	Val	Thr	Met	Asp
Glu 385	Leu	Ala	Met	Gln	Leu 390	Thr	Lys	Leu	Asn	Asp 395	Ala	Met	Ser	Lys	Leu 400
Arg	Glu	Ala	Lys	Ala 405	Lys	Leu	Val	Pro	Glu 410	Val	Lys	Pro	Gln	Pro 415	Glu
Asn	Pro	Glu	His 420	Gln	Arg	Pro	Thr	Thr 425	Pro	Ala	Pro	Asp	Thr 430	Lys	Pro
Ile	Pro	Gln 435	Pro	Glu	Gly	ГÀа	Lys 440	Pro	Ser	Val	Pro	Asp 445	Ile	Asn	Gln
Glu	Lys 450	Glu	Lys	Ala	Lys	Leu 455	Ala	Val	Ala	Thr	Tyr 460	Met	Ser	Lys	Ile
Leu 465	Asp	Asp	Ile	Gln	Lys 470	His	His	Leu	Gln	Lys 475	Glu	Lys	His	Arg	Gln 480
Ile	Val	Ala	Leu	Ile 485	Lys	Glu	Leu	Asp	Glu 490	Phe	Lys	Lys	Gln	Ala 495	Leu
Ser	Glu	Ile	Asp 500	Asn	Val	Asn	Thr	Lys 505	Val	Glu	Ile	Glu	Asn 510	Thr	Val

-continued

His	Lys	Ile 515	Phe	Ala	Asp	Met	Asp 520	Ala	Val	Val	Thr	Lys 525	Phe	Lys	ГÀз
Gly	Leu 530	Thr	Gln	Asp	Thr	Pro 535	Lys	Glu	Pro	Asp	Asn 540	Lys	Lys	Pro	Ser
Ala 545	Pro	Lys	Pro	Gly	Met 550	Gln	Pro	Ser	Pro	Gln 555	Pro	Glu	Gly	Lys	Lys 560
Pro	Ser	Val	Pro	Ala 565	Gln	Pro	Gly	Thr	Glu 570	Asp	ГÀа	Lys	Pro	Ser 575	Ala
Pro	ГЛа	Pro	Gly 580	Met	Gln	Pro	Ser	Pro 585	Gln	Pro	Glu	Gly	Lys	Lys	Pro
Ser	Val	Pro 595	Ala	Gln	Pro	Gly	Thr 600	Glu	Asp	Lys	Lys	Pro 605	Ser	Ala	Pro
Lys	Pro 610	Asp	Met	Gln	Pro	Ser 615	Pro	Gln	Pro	Glu	Gly 620	Lys	Lys	Pro	Ser
Val 625	Pro	Ala	Gln	Pro	Gly 630	Thr	Glu	Asp	Lys	Lys 635	Pro	Ser	Ala	Pro	Lys 640
Pro	Gly	Met	Gln	Pro 645	Ser	Pro	Gln	Pro	Glu 650	Gly	Lys	Lys	Pro	Ser 655	Val
Pro	Ala	Gln	Pro 660	Gly	Thr	Glu	Asp	Lys 665	Lys	Pro	Ser	Ala	Pro 670	Lys	Pro
Asp	Met	Gln 675	Pro	Ser	Pro	Gln	Pro 680	Glu	Gly	Lys	Lys	Pro 685	Ser	Val	Pro
Ala	Gln 690	Pro	Gly	Thr	Glu	Asp 695	Lys	Lys	Pro	Ser	Ala 700	Pro	Lys	Pro	Asp
Met 705	Gln	Pro	Ser	Pro	Gln 710	Pro	Glu	Gly	Lys	Lys 715	Pro	Ser	Val	Pro	Glu 720
Ile	Asn	Gln	Glu	Lys 725	Glu	Lys	Ala	Lys	Leu 730	Ala	Val	Ala	Thr	Glu 735	ГЛа
Lys	Leu	Pro	Ser 740	Thr	Gly	Val	Ala	Ser 745	Asn	Leu	Val	Leu	Glu 750	Ile	Ile
Gly	Leu	Leu 755	Gly	Leu	Ile	Gly	Thr 760	Ser	Phe	Ile	Ala	Met 765	Lys	Arg	Arg
Lys															
-210) - CT	70 TI	ои с	7											
		~	1: 4'												
	2> T														
<213	3 > OF	KGAN.	ISM:	Str	epto	cocci	ıs pr	neumo	oniae	€					
			ICE :												
Met 1	Ala	Asn	ГÀа	Ala 5	Val	Asn	Asp	Phe	Ile 10	Leu	Ala	Met	Asn	Tyr 15	Asp
ГÀа	ГЛа	ГЛа	Leu 20	Leu	Thr	His	Gln	Gly 25	Glu	Ser	Ile	Glu	Asn 30	Arg	Phe
Ile	Lys	Glu 35	Gly	Asn	Gln	Leu	Pro 40	Asp	Glu	Phe	Val	Val 45	Ile	Glu	Arg
Lys	Lys 50	Arg	Ser	Leu	Ser	Thr 55	Asn	Thr	Ser	Asp	Ile 60	Ser	Val	Thr	Ala
Thr 65	Asn	Asp	Ser	Arg	Leu 70	Tyr	Pro	Gly	Ala	Leu 75	Leu	Val	Val	Asp	Glu 80
Thr	Leu	Leu	Glu	Asn 85	Asn	Pro	Thr	Leu	Leu 90	Ala	Val	Asp	Arg	Ala 95	Pro
Met	Thr	Tyr	Ser 100	Ile	Asp	Leu	Pro	Gly 105	Leu	Ala	Ser	Ser	Asp	Ser	Phe

-continued

Leu	Gln	Val 115	Glu	Asp	Pro	Ser	Asn 120	Ser	Ser	Val	Arg	Gly 125	Ala	Val	Asn
Asp	Leu 130	Leu	Ala	ГÀз	Trp	His 135	Gln	Asp	Tyr	Gly	Gln 140	Val	Asn	Asn	Val
Pro	Ala	Arg	Met	Gln	Tyr 150	Glu	ГЛа	Ile	Thr	Ala 155	His	Ser	Met	Glu	Gln 160
	Lys	Val	ГЛа	Phe	Gly	Ser	Asp	Phe	Glu 170		Thr	Gly	Asn	Ser 175	
Asp	Ile	Asp			Ser	Val	His			Glu	ГÀа	Gln			Ile
Val	Asn		Lys	Gln	Ile	Tyr	-	185 Thr	Val	Ser	Val	-	190 Ala	Val	Lys
Asn	Pro	195 Gly	Asp	Val	Phe	Gln	200 Asp	Thr	Val	Thr	Val	205 Glu	Asp	Leu	Lys
	210	-	_		Ala	215	Ī				220		Ī		
225	-	-			230					235					240
Ala	Tyr	Gly	Arg	Gln 245	Val	Tyr	Leu	ГÀЗ	Leu 250	Glu	Thr	Thr	Ser	Lys 255	Ser
Asp	Glu	Val	Glu 260	Ala	Ala	Phe	Glu	Ala 265	Leu	Ile	Lys	Gly	Val 270	Lys	Val
Ala	Pro	Gln 275	Thr	Glu	Trp	Lys	Gln 280	Ile	Leu	Asp	Asn	Thr 285	Glu	Val	Lys
Ala	Val 290	Ile	Leu	Gly	Gly	Asp 295	Pro	Ser	Ser	Gly	Ala 300	Arg	Val	Val	Thr
Gly 305	Lys	Val	Asp	Met	Val 310	Glu	Asp	Leu	Ile	Gln 315	Glu	Gly	Ser	Arg	Phe 320
Thr	Ala	Asp	His	Pro	Gly	Leu	Pro	Ile	Ser 330	Tyr	Thr	Thr	Ser	Phe	Leu
Arg	Asp	Asn			Ala	Thr	Phe			Ser	Thr	Asp	_		Glu
Thr	Lys	Val	340 Thr	Ala	Tyr	Arg	Asn	345 Gly	Asp	Leu	Leu	Leu	350 Asp	His	Ser
Glv	Ala	355 Tyr	Val	Ala	Gln	Tvr	360 Tyr	Ile	Thr	Tro	Asn	365 Glu	Leu	Ser	Tyr
_	370	-				375	-				380				
385	His	Gin	Gly	ГÀа	Glu 390	Val	Leu	Thr	Pro	395	Ala	Trp	Asp	Arg	Asn 400
Gly	Gln	Asp	Leu	Thr 405	Ala	His	Phe	Thr	Thr 410	Ser	Ile	Pro	Leu	Lys 415	Gly
Asn	Val	Arg	Asn 420	Leu	Ser	Val	ГЛа	Ile 425	Arg	Glu	CÀa	Thr	Gly 430	Leu	Ala
Trp	Glu	Trp 435	Trp	Arg	Thr	Val	Tyr 440	Glu	Lys	Thr	Asp	Leu 445	Pro	Leu	Val
Arg	Lys 450	Arg	Thr	Ile	Ser	Ile 455	Trp	Gly	Thr	Thr	Leu 460	Tyr	Pro	Gln	Val
		Lys	Val	Glu	Asn										
465					470										

The invention claimed is:

1. Antigenic multivalent molecular construct consisting of a basic unit comprising a helper-T dependent carrier protein covalently bound to a minimum of three carbohydrate structures which are capsular polysaccharides of different serological specificity by a linker comprising imine reduced 65 bonds and amide bonds, wherein each carbohydrate structure comprises at least one of the repeating basic epitopes

consisting of a minimum of five to twelve monosaccharide residues, where said carrier protein is selected from the group consisting of natural diphtheria mutant protein CRM197, diphtheria toxoid, tetanus toxoid, Protein D from *Haemophilus influenzae*, Pneumococcal surface proteins,
 Pneumococcal toxin and derivatives thereof including tetanus toxoid derivatized by an adipic acid dihydrazide spacer characterized in that at least one mole or fraction thereof of

protein carrier carries at least one mole or fraction thereof of each of the at least three different type-specific carbohydrate antigens.

- 2. The antigenic multivalent molecular construct according to claim 1, wherein said carbohydrate structures are 5 oligosaccharides or polysaccharides.
- 3. The antigenic multivalent molecular construct according to 1, wherein said repeating basic epitope consists of a minimum of eight to twelve monosaccharide residues.
- 4. The antigenic multivalent molecular construct according to claim 1, wherein said carried carbohydrate antigens of different serological specificity are selected among those of Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus, Mycobacterium tuberculosis, Salmonella typhi, Escherichia coli, Vibrio cholerae, Candida albicans, Mycobacterium bovis or a combination thereof.
- 5. The antigenic multivalent molecular construct according to claim 4, wherein the carried carbohydrate antigens are at least three capsular polysaccharides selected among type 1, 2, 3, 4, 5, 6A, 6B,6C,6D,7F,8,9N, 9V, 10A, 11A, 11B, 11C, 11F, 12F, 14,15A,15B,15C, 17F, 18C, 19A, 19F, 20, 22F,23A, 23F, 33F, 35B of *Streptococcus pneumoniae* and/or among polysaccharides of group A, C, W135 and Y of *Neisseria meningitidis* and/or polysaccharide of type b of *Haemophilus influenzae*, and/or K polysaccharide antigens of *Staphylococcus aureus* and/or polysaccharide antigens of *Staphylococcus aureus* and/or polysaccharide antigens of

60

Mycobacterium tuberculosis and/or polysaccharide antigens of Salmonella typhi and/or polysaccharide antigens of Escherichia coli and/or polysaccharide antigens of Vibrio cholerae and/or polysaccharide antigens of Candida albicans and/or Mycobacterium bovis, or a combination thereof.

- 6. The antigenic multivalent molecular construct according to claim 5, wherein said construct comprises the carrier protein CRM197 and three capsular polysaccharides of *Streptococcus pneumoniae* selected among the triad of 3,6A, 7F, 4,5,9V; 1,6B,14; 18C,19A,23F; 6C,19F,22F; 12F,15B, 33F; 5,9V,19F; 1,14,19A; 22F,23F,33F; 4,6B,18C.
- 7. The antigenic multivalent molecular construct according to claim 5, wherein said construct comprises the carrier protein CRM197 and three capsular polysaccharides of *Streptococcus pneumoniae* selected among the triad of CRM197-3,6A,7F; CRM197-5,9V,19F; CRM197-1,14, 19A; CRM197-22F,23F,33F; CRM197-4,6B,18C.
- **8**. The antigenic Antigenic multivalent molecular construct according to claim **1** in monomeric or polymeric form.
- 9. The antigenic multivalent molecular construct according to claim 1 for use in a vaccine for the protection of a subject from the infections due to at least one pathogen selected among Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus, Salmonella typhi, Escherichia coli, Vibrio cholerae, Mycobacterium tuberculosis, Mycobacterium bovis and Candida albicans.

* * * * *